&

Arkitekturdokument

Version 0.3 PUMO02 2025-04-23

Arkitekturdokument

2025-04-23

Projektidentitet

Medlemmar
Namn Ansvarsomrade Mail
Alice Almgren Teamledare alial202@student.liu.se
Anton Taber Testledare antta671@student.liu.se
Axel Berg Arkitekt axebe390@student.liu.se
Isabel Neubauer Dokumentansvarig isaneb41@student.liu.se
Jakob Tormalm Analysansvarig jakto054@student.liu.se

Samuel Tuvstedt

Backendutvecklingsledare

samtubH93Qstudent.liu.se

Samuel Akesson

Konfigurationsansvarig

samakb19@Qstudent.liu.se

Simon Gunnarsson

Frontendutvecklingsledare

simgu061@student.liu.se

Stina Astrom

Kvalitetssamordnare

stias606@student.liu.se

Kund:

Digitaliseringsavdelningen, Linkopings universitet

Handledare:
Eric Ekstrom

Examinator / kursansvarig:

Lena Buffoni

2 /15

&

Arkitekturdokument

2025-04-23

Dokumenthistorik

Version

Datum

Andringar

Granskad av

Utfardat av

0.3

2025-04-23

Lagg till
EmploymentRate
till User

S.Ak

0.2

2025-04-10

"Entra-1D’ i
Figur 1.

Oka kontrast i
Figur 3.

PascalCase {or
datatyper i
Avsnitt 3.2.

Byt fran

’Assignment’
till *Task’.

AB

S.Ak, A.B

0.1

2025-03-11

Skapad.

S.G

A.B, S.Ak,
S.As

3/ 15

@ Arkitekturdokument 2025-04-23

Innehall
L. Referenser ..ottt ittt ittt tieeteeneaeaeacoeeasesesasacacacaesasnnnns 5
2. Inledning ...oviniii i i i it it i ittt i it i ittt e 6
2 . Sy e o 6
2.2. Arkitekturella mal och filosofi 6
2.3. Antaganden och beroenden 6
B T =1 13 8 0 <X 7
3.1, Oversikt PA SYSTEIIE . ..ottt ettt e 7
3.2, Datatyper 7
3.2.1. Harda datatyper 7
3.2.2. Tunna datatyper 8
3.3. DataserialiSeringt 8
3.4, Systemanatomi e 9
3.5. Struktur pa databas ... 10
4. Arkitekturpaverkande Kravc.ceieiiiiiiiiiiiinietnensoncnsnsosasanaanns 11
5. Val och begransningarc..uiiiiiiiiiiiiiiiiiirintnrenensosrnsenensanss 12
5.1. Systemovergripande e 12
5.2, Frontend 12
5.3, Backend 12
5.4, Utvecklingsmiljo 12
6. DesSignmmoONSter .. ovvtiti ittt ittt ittt ittt 14
6.1. Two-tier, Thin-client 14
6.2, Fasad ... 14
7. Abstraktioneroiiiiiiiiiiiiiiiiiieeeeeosoeesssssssssssssssssssssssnns 15
7.1. Entity Framework Coreo.uiiiii i e 15
1. AP 15

4/15

&

Arkitekturdokument 2025-04-23

1. Referenser

[1]
2]

EES

[10]

[11]

[12]

A. Almgren m.fi., "Kravspecifikation”, technical report, feb. 2025.

"Google JSON Style Guide”. Tillgénglig vid: https://google.github.io/styleguide/jsonc
styleguide.xml?showone=Property Name Format#Property Name Guidelines.
[Atkomstdatum: 11 mars 2025]

A. Almgren m.fl., "Kvalitetsplan”, technical report, feb. 2025.

Svelte, "Svelte Introduction”, 2024, Svelte. Tillganglig vid: https://svelte.dev/docs/
svelte/overview. [Atkomstdatum: 26 februari 2025]

Microsoft, "Entity Framework Core”, 11 december 2024, Microsoft. Tillganglig vid:
https: //learn.microsoft.com/en-us/ef/core/. [Atkomstdatum: 26 februari 2025]

"OpenAPI Specification”. Tillganglig vid: https://swagger.io/specification.
[Atkomstdatum: 11 april 2025]

"Redoc Github”. Tillganglig vid: https://github.com/Redocly/redoc. [Atkomstdatum:
11 april 2025]

Prettier, "What is Prettier?”, Prettier. Tillginglig vid: https://prettier.io/docs/.
[Atkomstdatum: 14 februari 2025

CSharpier, "CSharpier”, 11 februari 2025, CSharpier. Tillganglig vid: https://
csharpier.com/. [Atkomstdatum: 14 februari 2025]

typescript-eslint, "typescript-eslint”, typescript-eslint. Tillginglig vid: https://
typescript-eslint.io/getting-started. [Atkomstdatum: 17 februari 2025]

K. S. Déniel Varré, ”Software Architecture”, 12 februari 2025. Tillgénglig vid:
https://www.ida.liu.se/~TDDC88/theory/0barchitecture.pdf. [Atkomstdatum: 11
september 2024]

K. S. Déaniel Varro, "Design Patterns and UML Modeling Practice”, 12 februari 2025.
Tillginglig vid: https://www.ida.liu.se/~TDDC88/theory/06DesignPatterns-
UMLPractice.pdf. [Atkomstdatum: 05 september 2023]

5/ 15

https://google.github.io/styleguide/jsoncstyleguide.xml?showone=Property_Name_Format#Property_Name_Guidelines
https://google.github.io/styleguide/jsoncstyleguide.xml?showone=Property_Name_Format#Property_Name_Guidelines
https://svelte.dev/docs/svelte/overview
https://svelte.dev/docs/svelte/overview
https://learn.microsoft.com/en-us/ef/core/
https://swagger.io/specification
https://github.com/Redocly/redoc
https://prettier.io/docs/
https://csharpier.com/
https://csharpier.com/
https://typescript-eslint.io/getting-started
https://typescript-eslint.io/getting-started
https://www.ida.liu.se/~TDDC88/theory/05architecture.pdf
https://www.ida.liu.se/~TDDC88/theory/06DesignPatterns-UMLPractice.pdf
https://www.ida.liu.se/~TDDC88/theory/06DesignPatterns-UMLPractice.pdf

@ Arkitekturdokument 2025-04-23

2. Inledning
2.1. Syfte

I detta dokument beskrivs och motiveras tidsredovisningssystemets design- och
arkitekturval for att hjalpa nuvarande och framtida utvecklare att forsta systemet.
Arkitekturen grundas i stor utstrickning pa de krav som specificerats av kunden, de
resulterande begriansningarna och den forvantade kvalitetsnivan for produkten.

Dokumentet fungerar som stdod och vigledning for utvecklarna av produkten genom att ge
en overgripande beskrivning och motivering av systemets arkitektur pa en hog niva.
Dokumentet forvantas dven vara hjalpsamt till dem som ska underhalla systemet genom
att ge en tydlig 6versikt och forklaring av de bakomliggande besluten gillande
arkitekturen.

2.2. Arkitekturella mal och filosofi

De arkitektuella malen baseras pa att systemet ska vara enkelt att underhalla och robust
for langsiktig anvindning. Systemet forvintas vara i drift under en langre tid vilket &r
viktigt att ha i atanke vid designen av arkitekturen.

Baserat pa detta har nedanstaende designmal definierats:

e Underhallsvanligt: Systemet ska vara enkelt att underhalla, vilket innebéar
valstrukturerad kommenterad kod, bra dokumentation och en arkitektur som
underlattar vidareutveckling.

e Robust och langsiktigt hallbart: Eftersom systemet férvintas vara i drift under en
langre tid, ska arkitekturen vara stabil och palitlig.

e Integration med LiU:s SSO: Systemet ska stodja integration med LiU:s SSO.

o Skalbarhet och prestanda: Arkitekturen ska mojliggéra hantering av stora méangder
data over tid utan att forsdmra systemets prestanda.

¢ Modularitet och vidareutveckling: Arkitekturen ska vara modular sa att kunden
enkelt ska kunna vidareutveckla och anpassa det efter framtida behov.

2.3. Antaganden och beroenden

Systemets arkitekturella val begrinsas av de krav av programmeringssprak och ramverk
som har bestamts i kravspecifikationen [1]. Anvandargrénssnittet begrinsas dven av de
tillgdnglighetskrav som efterfragats av kunden.

Systemet ska &ven integreras med LiU:s SSO vilket utgor ytterligare ett beroende eftersom
det kraver att tjansten ar tillginglig och fungerar som forvantat.

Dessutom paverkas implementationen och tidsatgangen av projektgruppens kompetens och
formaga att lara sig de programmeringssprak och ramverk som ska anvéndas.

6/ 15

8 Arkitekturdokument 2025-04-23

3. Systemet

Detta kapitel beskriver 6vergripande implementationsdetaljer kring produkten.

3.1. Oversikt pa systemet

Figur 1 illustrerar hur systemet ar uppbyggd. Till vinster syns den externa webblasaren
och dess kontakt med frontend-servern. Till hoger syns backend-servern och dess kontakt
med frontend, databas och extern Entra-ID applikation for autentisering.

Client (browser) e
acken

] Entity Framework -
Frontend Data parsing Core
I Data.
Frontend-server | API(AspNet) validation
Authentication ’II Entra ID I

Figur 1: Blockschema 6ver systemet

Frontend-serverns uppgift ar att generera och skicka webbsidor till webblasaren samt
hantera all kommunikation mellan webblasaren och systemet. Den data som anvénds for
att generera webbsidorna hamtas fran backend-serverns API, se Avsnitt 7.2.

Backend-serverns uppgift ar att ta emot forfragningar fran frontend-servern, generera
lampliga objekt fran databas-data och utfoéra all logik. Ibland kommer frontend gora
forfragningar efter objekt som perfekt verensstammer med tabeller i databasen, men
ibland kommer mer tunna objekt (se Avsnitt 3.2.2) genereras fran de typerna.

3.2. Datatyper
En del data aterkommer ofta tillsammans och grupperas och namnges och defineras darfor
som systemets datatyper.

Dessa datatyper aterkommer som objekt i frontend, backend och data.

En uppdelning mellan tva kategorier av datatyper har identifierats: tunna datatyper och
harda datatyper.

3.2.1. Harda datatyper

Harda datatyper kidnnetecknas av att de har en direkt motsvarig tabell i databasen, som en
konsekvens av Entity Framework. For det mesta kommer frontenden inte vara medveten
om dess existens, utan far arbeta med tunna datatyper.

En lista ¢ver alla harda datatyper:
e User : Information om en viss anvandare.

e TFavorites : Vilka Tasks som en viss anviandare vill ska synas hogst upp i listorna.

TimeReport : En tidsredovisning. Ar kopplad till bade en Task och en User.

Task : En uppgift. Ar kopplad till grupp och aktivitet. Har namn, start- och slutdatum.

7/15

@ Arkitekturdokument 2025-04-23

3.2.2. Tunna datatyper
Tunna datatyper kinnetecknas av att frontend ofta anviander dem for att bygga upp
dokumentet. De &r ofta valdigt specifika och sammanhangsberoende.

Exempel pa tunna datatyper:

e TaskWithoutUser : En Task som inte har information om medlemmar, eftersom anvindare

redan ar inloggad och vet att den ar medlem.

e TimeReportView : En lista av TimeReport for en viss tidsperiod. Behovs till exempel for att
rita upp en manadsvy i frontend utan onoédig data.

3.3. Dataserialisering

Alla datatyper maste kunna konverteras till strangformat for att kunna skickas genom
natverksforfragningar. I bade backend- och frontendkoden finns stod for automatisk
serialisering, i form av JSON. Enligt Google JSON Style Guide [2] ska properties vara i
camelCase, och det ar dven sa C# automatiskt JSON-serialiserar objekt.

Ett speciallfall for en del tunna datatyper som harstammar fran time_report &r att de maste
kunna konverteras till .csv-format. Tabell 1 visar formatet systemet férvantar sig under

import/export av .csv filer.

Tabell 1: .csv-representation av en del tunna datatyper som beror pa TimeReport

Jan 1 Jan 2 Jan 31
Lisam-DevGroup-TimeTracker | () 0 0 0
LiuApp-DevGroup-TimeTracker | () 0 0 0

8/ 15

&) Arkitekturdokument 2025-04-23

3.4. Systemanatomi

Baserat pa anvindningsfallen som definierats i kravspecifikationen [1] har en systemanatomi
skapats. Den syns i Figur 2.

Anvandarfunktioner

Séka pa personer

[Skapa uppgift } { Importera .csv } [Soka pa uppifter]—)[Visa redovisad tid

(admin)
Redovisa tid Redigera tid
Anvandargranssnitt
Loada in Exportera .csv med
A 99 redovisad tid
Fylla i falt och
ﬂ skicka
Databasfunktioner { v Serverfunktioner v
Lasa/skriva fran/till Autentisera R Skapa .
databasen anvangare genom sakerhetsg{'upp for
LiU-SsO uppgift
Kommunicera med Kommunicera med
webbservrar LiU API
Y A 4 Y
Frontend Backend Publicera tjanster pa
datavalidering datavalidering Azure

Figur 2: Systemanatomin

Systemanatomin visar vilka funktionaliteter som ar beroende av andra funktionaliteter.

Hogst upp syns funktionalitet som slutanvéndaren &r intresserad av. Varje lager nedanfor
ar funktionalitet som krévs for att uppna allt ovanfor. Man kan lasa det som att varje
funktionalitets héjd 6verensstammer med dess abstraktionsniva.

9 /15

&

Arkitekturdokument

2025-04-23

3.5. Struktur pa databas

Alla harda datatyper som definieras i Avsnitt 3.2.1 har, som tidigare ndmnt, en
motsvarande tabell i databasen. Manga av tabellerna har relationer till varandra, vilket

illustreras genom pilar mellan kolumner.

En oversikt 6ver databasen kan ses i Figur 3.

de guid

Userld guid >———
Role enum

ExpiresOn datetimeoffset

e guid
AccountId varchar
Liuld varchar
Name varchar
Email varchar
EmploymentPercentage int

TaskMonthMappings

TaskId £ guid >———
=< Userld® guid
Year int
Month int
TaskMember
TaskId £
UserId £ guid
TaskId £ guid >

< Userld® guid

Time

TaskId £ guid >

< Userld® guid
Date 2 date

Minutes int

Figur 3: Diagram 6ver databasen

guid
m e guid

Activity varchar
Name varchar
StartDate date
EndDate date

10 /15

&

Arkitekturdokument

2025-04-23

4. Arkitekturpaverkande krav

I Tabell 2 listas de krav som paverkar arkitekturen pa nagot sitt och boér darmed has i

atanke vid designbeslut. Samtliga ar himtade fran kravspecifikationen [1]. Kraven ar listade

tillsammans med en kort beskrivning samt en motivering till varfér det ar relevant for

arkitekturen.
Tabell 2: Lista 6ver arkitekturpaverkande krav

Krav-ID Beskrivning Motivering

FR1, FR2, FR4, FR9, Beskriver Kréver integration med

FR10, FR12 inloggningsprocessen samt LiU:s SSO och hantering av
hur systemet ska anpassas grupper.
baserat pa anvindarens
grupp.

FR3, FR20 Anger att endast LiU-ID Begrinsar databasdesignen i
ska lagras som vilken data som ska sparas
personuppgift, och ingen och kréver att systemet
data far raderas fran sakerstaller att
databasen, &ven om en tidsredovisningsdata
anvandare tas bort fran en | bevaras.
uppgift.

FR17, FR18 Systemet ska kunna Kréaver stod for att skriva

exportera och importera
data i .CSV-format.

och lasa .CSV-filer.

FR16, FR22, FR23

Systemet ska ha stod for
filtrering och stkning pa
uppdrag och personer.

Kraver att databasen har
stod for sokningar och
filtreringar.

NFR1, NFR2 Systemet ska implementeras | Begrénsar valen for
med C#, ASP.NET, Svelte och implementeringen av
Typescript. frontend och backend.
NFR4, NFRS Systemet ska folja LiU:s Paverkar designen av front-

grafiska profil och specifika
tillganglighetskrav

end.

11 /15

@ Arkitekturdokument 2025-04-23

5. Val och begriansningar

I detta avsnitt beskrivs nagra designbeslut, begransningar och motiveringen till dessa.

5.1. Systemovergripande

Anvéndare av tidsredovisningssystemet autentiseras genom LiU:s SSO. Det har valts
eftersom kunden anvander det systemet for att hantera tillgang till systemet.

Systemet har delats upp i tva servrar: en for frontend och en for backend. Det har gjorts
for att uppna modularitet, vilket var ett mal enligt kvalitetsplan [3]. Om servern hade
implementerats i en enda kodbas ar det storre risk att det blir otydligt vilken det av
systemet som gor vad, var man ska leta for att hitta ett beskrivningen for ett visst
beteende och att ett komplicerat néit av beroenden skapas. Uppdelningen gor sa att
varje server kan jobba isolerat och har en tydlig uppgift.

5.2. Frontend

Anvindargranssnittet ska vara byggd i ett frontend-ramverk. Detta for att ett granssnitt
med ren HTML+CSS+JS kréver for mycket repetition av kod (boilerplate).

Frontend ska vara baserat pa och utvecklat med Svelte [4].

5.3. Backend

I enlighet med kundens vilja ska backend-servern koras i ASP.NET och driftsattas pa
Azure.

Databasen driftsatts med Microsoft SQL i enlighet med kundens vilja.

Uppkopplingen till databasen kommer ske genom Entity Framework Core [5] som gor
att databasens tabeller och anrop kan definieras i C#-kod direkt i backend. Mer om
Entity Framework Core star i Avsnitt 7.1.

For sessioner har vi valt att anvinda var egna l6sning som sparar sessioner genererar ett
GUID som id och sparar den i databasen. Anledningen &r att den forbyggda 16sningen,
Microsoft. AspNetCore.Session, gor antagandet att backend-servern far forfragningar direkt fran
klienten och skickar darfér en Set-Cookie-header. Eftersom all trafik skickas genom
frontend-servern med var arkitektur innebar det att vi behévde skapa en ful l6sningen
for att fa den forbyggda att fungera. Dessutom sparar den forbyggda losningen alla
sessioner i minnet och vi ville spara dem i databasen. Vi gjorde det valet innan vi hade
fatt tillgang till LiU-SSO och inte visste hur lange en LiU-SSO-session &r giltig. Med
tanke pa att de bara &r giltiga i en och en halv timme spelar det ingen storre roll om
man skulle forlora alla sessioner vid server omstart och att spara dem i minnet skulle
vara ok, om inte béattre.

5.4. Utvecklingsmiljo

Vid utveckling av C#-kod kommer vi anvéinda oss utav OpenAPI [6] och Redoc [7] for
att generera dokumentation till API. Den kan da anvandas som referens av bade
frontend och backend for vilka d&ndpunkter som finns, vilken data den forvintar sig och
vilken data den skickar.

12 / 15

8 Arkitekturdokument 2025-04-23

o Vid utveckling i Svelte ska formatteringsverktyget Prettier [8] anvindas for att fa ett
snyggt och unisont utseende pa koden. Pa samma vis kommer CSharpier [9] anvindas
for att formatera C#-koden.

o Vid utveckling i Svelte ska ESLint [10] anvindas for att hitta potentiella problem i
koden.

13 /15

@ Arkitekturdokument 2025-04-23

6. Designmonster

6.1. Two-tier, Thin-client

Systemet foljer en klient-server modell som delar upp systemet i tva nivaer dar den storsta

belastningen ligger pa servern:

e Klient: Detta representerar anvindargranssnittet och hanterar all interaktion med
anvandaren sasom inmatning och presentation av data.

e Server: Ansvarar bade for affarslogiken och datahantering. Detta inkluderar lagring,
databasoperationer och hémtning av data men dven att féormedla data mellan klient och
servern. Har behandlas ocksa anvindarforfragningar och berdkningar utfors [11].

6.2. Fasad

Facade

Figur 4: Illustration av designmonstret fasad [12]

Fasad ar ett designmonster som tillhandahaller ett enhetligt granssnitt till en uppséttning
granssnitt i ett delsystem. Monstret illustreras i Figur 4, dar Facade dr den engelska
bendmningen pa fasad. Det fungerar som ett hogre-niva gréinssnitt med syftet att forenkla
anvandandet av delsystemet. Fordelarna med fasad ar att det minskar systemets
komplexitet, gor systemet mer ateranvindbart och enklare att anpassa. Dessutom framjar
det svag koppling, vilket ar onskvirt eftersom det mojliggoér forandringar, gor koden blir
mer lattforstaelig och testbar genom att isolera fel [12].

Detta forenklar kommunikationen mellan systemet frontend och backend, eftersom
frontend kan gora anrop till fasaden utan att behtova kénna till den underliggande
strukturen.

Genom att anvinda designmonstret fasad uppfylls kundens krav pa ett system som &r latt
att underhalla.

14 / 15

@ Arkitekturdokument 2025-04-23

7. Abstraktioner

De tva huvudsakliga abstraktionerna som systemet kommer implementera ligger mellan
backend-servern och databasen samt mellan backend-server och frontend-servern.

7.1. Entity Framework Core

Mellan backend-servern och databasen anvinds verktyget Entity Framework Core [5]. Det
forenklar och abstraherar kommunikation mellan backend-servern och databasen.

Verktyget kopplar en klass i C#-koden pa backend-servern till en tabell i databasen och
innehaller &ven funktionaliteten att uppdatera databasens tabeller efter en dndring har
gjorts i koden.

Fordelen med att anvanda ett sddant verktyg &r att all data som hamtas fran databasen
garanterat har ratt typ. Det forenklar for utvecklarna att skriva mer koncis och séker kod.
Eftersom databasens struktur definieras i koden kan den anvandas som referens av
utvecklarna utan att behdva 6ppna ett annat program, den kan &ven av samma anledning
enkelt aterskapas for en ny miljo, exempelvis en testningsmiljo.

7.2. API

Mellan backend-servern och frontend-servern kommer en API finnas som granssnitt. Malet
med APIL:n ar att abstrahera bort sa mycket som mojligt fran frontend-servern sa att den
enkelt kan hamta alla data den behover for att generera en webbsida med ideellt ett anrop.
Alternativet ar att istéllet behova gora ett stort antal anrop till APL:n for att sedan filtrera
alla data som hamtats. Det separerar d&ven ansvaret mellan backend-servern och frontend-
servern dar backend-serverns jobb ar att hantera data och frontend-serverns jobb att
generera webbsidor. API:n kommer anvinda sig utav designmostret fasad (Avsnitt 6.2)
genom att ge frontend-servern ett simpelt granssnitt for att hamta data som gémmer
komplexiteten av att samla ihop den data.

15 / 15

	1. Referenser
	2. Inledning
	2.1. Syfte
	2.2. Arkitekturella mål och filosofi
	2.3. Antaganden och beroenden

	3. Systemet
	3.1. Översikt på systemet
	3.2. Datatyper
	3.2.1. Hårda datatyper
	3.2.2. Tunna datatyper

	3.3. Dataserialisering
	3.4. Systemanatomi
	3.5. Struktur på databas

	4. Arkitekturpåverkande krav
	5. Val och begränsningar
	5.1. Systemövergripande
	5.2. Frontend
	5.3. Backend
	5.4. Utvecklingsmiljö

	6. Designmönster
	6.1. Two-tier, Thin-client
	6.2. Fasad

	7. Abstraktioner
	7.1. Entity Framework Core
	7.2. API

