
Arkitekturdokument
Version 0.3 PUM02 2025-04-23

Arkitekturdokument 2025-04-23

Projektidentitet

Medlemmar

Namn Ansvarsområde Mail

Alice Almgren Teamledare alial202@student.liu.se

Anton Taber Testledare antta671@student.liu.se

Axel Berg Arkitekt axebe390@student.liu.se

Isabel Neubauer Dokumentansvarig isane541@student.liu.se

Jakob Tormalm Analysansvarig jakto054@student.liu.se

Samuel Tuvstedt Backendutvecklingsledare samtu593@student.liu.se

Samuel Åkesson Konfigurationsansvarig samak519@student.liu.se

Simon Gunnarsson Frontendutvecklingsledare simgu061@student.liu.se

Stina Åström Kvalitetssamordnare stias606@student.liu.se

Kund:
Digitaliseringsavdelningen, Linköpings universitet

Handledare:
Eric Ekström

Examinator / kursansvarig:
Lena Buffoni

2 / 15

Arkitekturdokument 2025-04-23

Dokumenthistorik

Version Datum Ändringar Granskad av Utfärdat av

0.3 2025-04-23 Lägg till
EmploymentRate
till User

S.Åk

0.2 2025-04-10 ’Entra-ID’ i
Figur 1.

Öka kontrast i
Figur 3.

PascalCase för
datatyper i
Avsnitt 3.2.

Byt från
’Assignment’
till ’Task’.

A.B S.Åk, A.B

0.1 2025-03-11 Skapad. S.G A.B, S.Åk,
S.Ås

3 / 15

Arkitekturdokument 2025-04-23

Innehåll

1. Referenser . ⁠5

2. Inledning . ⁠6
2.1. Syfte . ⁠6
2.2. Arkitekturella mål och filosofi . ⁠6
2.3. Antaganden och beroenden . ⁠6

3. Systemet . ⁠7
3.1. Översikt på systemet . ⁠7
3.2. Datatyper . ⁠7

3.2.1. Hårda datatyper . ⁠7
3.2.2. Tunna datatyper . ⁠8

3.3. Dataserialisering . ⁠8
3.4. Systemanatomi . ⁠9
3.5. Struktur på databas . ⁠10

4. Arkitekturpåverkande krav . ⁠11

5. Val och begränsningar . ⁠12
5.1. Systemövergripande . ⁠12
5.2. Frontend . ⁠12
5.3. Backend . ⁠12
5.4. Utvecklingsmiljö . ⁠12

6. Designmönster . ⁠14
6.1. Two-tier, Thin-client . ⁠14
6.2. Fasad . ⁠14

7. Abstraktioner . ⁠15
7.1. Entity Framework Core . ⁠15
7.2. API . ⁠15

4 / 15

Arkitekturdokument 2025-04-23

1. Referenser
[1] A. Almgren m.fl., ”Kravspecifikation”, technical report, feb. 2025.

[2] ”Google JSON Style Guide”. Tillgänglig vid: https://google.github.io/styleguide/jsonc
styleguide.xml?showone=Property_Name_Format#Property_Name_Guidelines.
[Åtkomstdatum: 11 mars 2025]

[3] A. Almgren m.fl., ”Kvalitetsplan”, technical report, feb. 2025.

[4] Svelte, ”Svelte Introduction”, 2024, Svelte. Tillgänglig vid: https://svelte.dev/docs/
svelte/overview. [Åtkomstdatum: 26 februari 2025]

[5] Microsoft, ”Entity Framework Core”, 11 december 2024, Microsoft. Tillgänglig vid:
https://learn.microsoft.com/en-us/ef/core/. [Åtkomstdatum: 26 februari 2025]

[6] ”OpenAPI Specification”. Tillgänglig vid: https://swagger.io/specification.
[Åtkomstdatum: 11 april 2025]

[7] ”Redoc Github”. Tillgänglig vid: https://github.com/Redocly/redoc. [Åtkomstdatum:
11 april 2025]

[8] Prettier, ”What is Prettier?”, Prettier. Tillgänglig vid: https://prettier.io/docs/.
[Åtkomstdatum: 14 februari 2025]

[9] CSharpier, ”CSharpier”, 11 februari 2025, CSharpier. Tillgänglig vid: https://
csharpier.com/. [Åtkomstdatum: 14 februari 2025]

[10] typescript-eslint, ”typescript-eslint”, typescript-eslint. Tillgänglig vid: https://
typescript-eslint.io/getting-started. [Åtkomstdatum: 17 februari 2025]

[11] K. S. Dániel Varró, ”Software Architecture”, 12 februari 2025. Tillgänglig vid:
https://www.ida.liu.se/~TDDC88/theory/05architecture.pdf. [Åtkomstdatum: 11
september 2024]

[12] K. S. Dániel Varró, ”Design Patterns and UML Modeling Practice”, 12 februari 2025.
Tillgänglig vid: https://www.ida.liu.se/~TDDC88/theory/06DesignPatterns-
UMLPractice.pdf. [Åtkomstdatum: 05 september 2023]

5 / 15

https://google.github.io/styleguide/jsoncstyleguide.xml?showone=Property_Name_Format#Property_Name_Guidelines
https://google.github.io/styleguide/jsoncstyleguide.xml?showone=Property_Name_Format#Property_Name_Guidelines
https://svelte.dev/docs/svelte/overview
https://svelte.dev/docs/svelte/overview
https://learn.microsoft.com/en-us/ef/core/
https://swagger.io/specification
https://github.com/Redocly/redoc
https://prettier.io/docs/
https://csharpier.com/
https://csharpier.com/
https://typescript-eslint.io/getting-started
https://typescript-eslint.io/getting-started
https://www.ida.liu.se/~TDDC88/theory/05architecture.pdf
https://www.ida.liu.se/~TDDC88/theory/06DesignPatterns-UMLPractice.pdf
https://www.ida.liu.se/~TDDC88/theory/06DesignPatterns-UMLPractice.pdf

Arkitekturdokument 2025-04-23

2. Inledning

2.1. Syfte
I detta dokument beskrivs och motiveras tidsredovisningssystemets design- och
arkitekturval för att hjälpa nuvarande och framtida utvecklare att förstå systemet.
Arkitekturen grundas i stor utsträckning på de krav som specificerats av kunden, de
resulterande begränsningarna och den förväntade kvalitetsnivån för produkten.

Dokumentet fungerar som stöd och vägledning för utvecklarna av produkten genom att ge
en övergripande beskrivning och motivering av systemets arkitektur på en hög nivå.
Dokumentet förväntas även vara hjälpsamt till dem som ska underhålla systemet genom
att ge en tydlig översikt och förklaring av de bakomliggande besluten gällande
arkitekturen.

2.2. Arkitekturella mål och filosofi
De arkitektuella målen baseras på att systemet ska vara enkelt att underhålla och robust
för långsiktig användning. Systemet förväntas vara i drift under en längre tid vilket är
viktigt att ha i åtanke vid designen av arkitekturen.

Baserat på detta har nedanstående designmål definierats:
• Underhållsvänligt: Systemet ska vara enkelt att underhålla, vilket innebär

välstrukturerad kommenterad kod, bra dokumentation och en arkitektur som
underlättar vidareutveckling.

• Robust och långsiktigt hållbart: Eftersom systemet förväntas vara i drift under en
längre tid, ska arkitekturen vara stabil och pålitlig.

• Integration med LiU:s SSO: Systemet ska stödja integration med LiU:s SSO.
• Skalbarhet och prestanda: Arkitekturen ska möjliggöra hantering av stora mängder

data över tid utan att försämra systemets prestanda.
• Modularitet och vidareutveckling: Arkitekturen ska vara modulär så att kunden

enkelt ska kunna vidareutveckla och anpassa det efter framtida behov.

2.3. Antaganden och beroenden
Systemets arkitekturella val begränsas av de krav av programmeringsspråk och ramverk
som har bestämts i kravspecifikationen [1]. Användargränssnittet begränsas även av de
tillgänglighetskrav som efterfrågats av kunden.

Systemet ska även integreras med LiU:s SSO vilket utgör ytterligare ett beroende eftersom
det kräver att tjänsten är tillgänglig och fungerar som förväntat.

Dessutom påverkas implementationen och tidsåtgången av projektgruppens kompetens och
förmåga att lära sig de programmeringsspråk och ramverk som ska användas.

6 / 15

Arkitekturdokument 2025-04-23

3. Systemet
Detta kapitel beskriver övergripande implementationsdetaljer kring produkten.

3.1. Översikt på systemet
Figur 1 illustrerar hur systemet är uppbyggd. Till vänster syns den externa webbläsaren
och dess kontakt med frontend-servern. Till höger syns backend-servern och dess kontakt
med frontend, databas och extern Entra-ID applikation för autentisering.

Figur 1: Blockschema över systemet

Frontend-serverns uppgift är att generera och skicka webbsidor till webbläsaren samt
hantera all kommunikation mellan webbläsaren och systemet. Den data som används för
att generera webbsidorna hämtas från backend-serverns API, se Avsnitt 7.2.

Backend-serverns uppgift är att ta emot förfrågningar från frontend-servern, generera
lämpliga objekt från databas-data och utföra all logik. Ibland kommer frontend göra
förfrågningar efter objekt som perfekt överensstämmer med tabeller i databasen, men
ibland kommer mer tunna objekt (se Avsnitt 3.2.2) genereras från de typerna.

3.2. Datatyper
En del data återkommer ofta tillsammans och grupperas och namnges och defineras därför
som systemets datatyper.

Dessa datatyper återkommer som objekt i frontend, backend och data.

En uppdelning mellan två kategorier av datatyper har identifierats: tunna datatyper och
hårda datatyper.

3.2.1. Hårda datatyper

Hårda datatyper kännetecknas av att de har en direkt motsvarig tabell i databasen, som en
konsekvens av Entity Framework. För det mesta kommer frontenden inte vara medveten
om dess existens, utan får arbeta med tunna datatyper.

En lista över alla hårda datatyper:

• User : Information om en viss användare.

• Favorites : Vilka Tasks som en viss användare vill ska synas högst upp i listorna.

• TimeReport : En tidsredovisning. Är kopplad till både en Task och en User.

• Task : En uppgift. Är kopplad till grupp och aktivitet. Har namn, start- och slutdatum.

7 / 15

Arkitekturdokument 2025-04-23

3.2.2. Tunna datatyper

Tunna datatyper kännetecknas av att frontend ofta använder dem för att bygga upp
dokumentet. De är ofta väldigt specifika och sammanhangsberoende.

Exempel på tunna datatyper:

• TaskWithoutUser : En Task som inte har information om medlemmar, eftersom användare
redan är inloggad och vet att den är medlem.

• TimeReportView : En lista av TimeReport för en viss tidsperiod. Behövs till exempel för att
rita upp en månadsvy i frontend utan onödig data.

3.3. Dataserialisering
Alla datatyper måste kunna konverteras till strängformat för att kunna skickas genom
nätverksförfrågningar. I både backend- och frontendkoden finns stöd för automatisk
serialisering, i form av JSON. Enligt Google JSON Style Guide [2] ska properties vara i
camelCase, och det är även så C# automatiskt JSON-serialiserar objekt.

Ett speciallfall för en del tunna datatyper som härstammar från time_report är att de måste
kunna konverteras till .csv-format. Tabell 1 visar formatet systemet förväntar sig under
import/export av .csv filer.

Tabell 1: .csv-representation av en del tunna datatyper som beror på TimeReport

Jan 1 Jan 2 … Jan 31
Lisam-DevGroup-TimeTracker 0 0 0 0
LiuApp-DevGroup-TimeTracker 0 0 0 0

8 / 15

Arkitekturdokument 2025-04-23

3.4. Systemanatomi
Baserat på användningsfallen som definierats i kravspecifikationen [1] har en systemanatomi
skapats. Den syns i Figur 2.

Figur 2: Systemanatomin

Systemanatomin visar vilka funktionaliteter som är beroende av andra funktionaliteter.

Högst upp syns funktionalitet som slutanvändaren är intresserad av. Varje lager nedanför
är funktionalitet som krävs för att uppnå allt ovanför. Man kan läsa det som att varje
funktionalitets höjd överensstämmer med dess abstraktionsnivå.

9 / 15

Arkitekturdokument 2025-04-23

3.5. Struktur på databas
Alla hårda datatyper som definieras i Avsnitt 3.2.1 har, som tidigare nämnt, en
motsvarande tabell i databasen. Många av tabellerna har relationer till varandra, vilket
illustreras genom pilar mellan kolumner.

En översikt över databasen kan ses i Figur 3.

0..1

*

1
*

1

*
1

*

1

*

1

*

1

*

1

*

1

*

User

Id guid

AccountId varchar

LiuId varchar

Name varchar

Email varchar

EmploymentPercentage int

Session

Id guid

UserId guid

Role enum

ExpiresOn datetimeoffset
Task

Id guid

Activity varchar

Name varchar

StartDate date

EndDate date

TaskMember

TaskId guid

UserId guid

TaskMonthMappings

TaskId guid

UserId guid

Year int

Month int

Time

TaskId guid

UserId guid

Date date

Minutes int

Favorites

TaskId guid

UserId guid

Figur 3: Diagram över databasen

10 / 15

Arkitekturdokument 2025-04-23

4. Arkitekturpåverkande krav
I Tabell 2 listas de krav som påverkar arkitekturen på något sätt och bör därmed has i
åtanke vid designbeslut. Samtliga är hämtade från kravspecifikationen [1]. Kraven är listade
tillsammans med en kort beskrivning samt en motivering till varför det är relevant för
arkitekturen.

Tabell 2: Lista över arkitekturpåverkande krav

Krav-ID Beskrivning Motivering

FR1, FR2, FR4, FR9,
FR10, FR12

Beskriver
inloggningsprocessen samt
hur systemet ska anpassas
baserat på användarens
grupp.

Kräver integration med
LiU:s SSO och hantering av
grupper.

FR3, FR20 Anger att endast LiU-ID
ska lagras som
personuppgift, och ingen
data får raderas från
databasen, även om en
användare tas bort från en
uppgift.

Begränsar databasdesignen i
vilken data som ska sparas
och kräver att systemet
säkerställer att
tidsredovisningsdata
bevaras.

FR17, FR18 Systemet ska kunna
exportera och importera
data i .CSV-format.

Kräver stöd för att skriva
och läsa .CSV-filer.

FR16, FR22, FR23 Systemet ska ha stöd för
filtrering och sökning på
uppdrag och personer.

Kräver att databasen har
stöd för sökningar och
filtreringar.

NFR1, NFR2 Systemet ska implementeras
med C#, ASP.NET, Svelte och
Typescript.

Begränsar valen för
implementeringen av
frontend och backend.

NFR4, NFR8 Systemet ska följa LiU:s
grafiska profil och specifika
tillgänglighetskrav

Påverkar designen av front-
end.

11 / 15

Arkitekturdokument 2025-04-23

5. Val och begränsningar
I detta avsnitt beskrivs några designbeslut, begränsningar och motiveringen till dessa.

5.1. Systemövergripande
• Användare av tidsredovisningssystemet autentiseras genom LiU:s SSO. Det har valts

eftersom kunden använder det systemet för att hantera tillgång till systemet.

• Systemet har delats upp i två servrar: en för frontend och en för backend. Det har gjorts
för att uppnå modularitet, vilket var ett mål enligt kvalitetsplan [3]. Om servern hade
implementerats i en enda kodbas är det större risk att det blir otydligt vilken det av
systemet som gör vad, var man ska leta för att hitta ett beskrivningen för ett visst
beteende och att ett komplicerat nät av beroenden skapas. Uppdelningen gör så att
varje server kan jobba isolerat och har en tydlig uppgift.

5.2. Frontend
• Användargränssnittet ska vara byggd i ett frontend-ramverk. Detta för att ett gränssnitt

med ren HTML+CSS+JS kräver för mycket repetition av kod (boilerplate).

• Frontend ska vara baserat på och utvecklat med Svelte [4].

5.3. Backend
• I enlighet med kundens vilja ska backend-servern köras i ASP.NET och driftsättas på

Azure.

• Databasen driftsätts med Microsoft SQL i enlighet med kundens vilja.

• Uppkopplingen till databasen kommer ske genom Entity Framework Core [5] som gör
att databasens tabeller och anrop kan definieras i C#-kod direkt i backend. Mer om
Entity Framework Core står i Avsnitt 7.1.

• För sessioner har vi valt att använda vår egna lösning som sparar sessioner genererar ett
GUID som id och sparar den i databasen. Anledningen är att den förbyggda lösningen,
Microsoft.AspNetCore.Session, gör antagandet att backend-servern får förfrågningar direkt från
klienten och skickar därför en Set-Cookie-header. Eftersom all trafik skickas genom
frontend-servern med vår arkitektur innebar det att vi behövde skapa en ful lösningen
för att få den förbyggda att fungera. Dessutom sparar den förbyggda lösningen alla
sessioner i minnet och vi ville spara dem i databasen. Vi gjorde det valet innan vi hade
fått tillgång till LiU-SSO och inte visste hur länge en LiU-SSO-session är giltig. Med
tanke på att de bara är giltiga i en och en halv timme spelar det ingen större roll om
man skulle förlora alla sessioner vid server omstart och att spara dem i minnet skulle
vara ok, om inte bättre.

5.4. Utvecklingsmiljö
• Vid utveckling av C#-kod kommer vi använda oss utav OpenAPI [6] och Redoc [7] för

att generera dokumentation till API. Den kan då användas som referens av både
frontend och backend för vilka ändpunkter som finns, vilken data den förväntar sig och
vilken data den skickar.

12 / 15

Arkitekturdokument 2025-04-23

• Vid utveckling i Svelte ska formatteringsverktyget Prettier [8] användas för att få ett
snyggt och unisont utseende på koden. På samma vis kommer CSharpier [9] användas
för att formatera C#-koden.

• Vid utveckling i Svelte ska ESLint [10] användas för att hitta potentiella problem i
koden.

13 / 15

Arkitekturdokument 2025-04-23

6. Designmönster

6.1. Two-tier, Thin-client

Systemet följer en klient-server modell som delar upp systemet i två nivåer där den största
belastningen ligger på servern:
• Klient: Detta representerar användargränssnittet och hanterar all interaktion med

användaren såsom inmatning och presentation av data.
• Server: Ansvarar både för affärslogiken och datahantering. Detta inkluderar lagring,

databasoperationer och hämtning av data men även att förmedla data mellan klient och
servern. Här behandlas också användarförfrågningar och beräkningar utförs [11].

6.2. Fasad

Figur 4: Illustration av designmönstret fasad [12]

Fasad är ett designmönster som tillhandahåller ett enhetligt gränssnitt till en uppsättning
gränssnitt i ett delsystem. Mönstret illustreras i Figur 4, där Facade är den engelska
benämningen på fasad. Det fungerar som ett högre-nivå gränssnitt med syftet att förenkla
användandet av delsystemet. Fördelarna med fasad är att det minskar systemets
komplexitet, gör systemet mer återanvändbart och enklare att anpassa. Dessutom främjar
det svag koppling, vilket är önskvärt eftersom det möjliggör förändringar, gör koden blir
mer lättförståelig och testbar genom att isolera fel [12].

Detta förenklar kommunikationen mellan systemet frontend och backend, eftersom
frontend kan göra anrop till fasaden utan att behöva känna till den underliggande
strukturen.

Genom att använda designmönstret fasad uppfylls kundens krav på ett system som är lätt
att underhålla.

14 / 15

Arkitekturdokument 2025-04-23

7. Abstraktioner
De två huvudsakliga abstraktionerna som systemet kommer implementera ligger mellan
backend-servern och databasen samt mellan backend-server och frontend-servern.

7.1. Entity Framework Core
Mellan backend-servern och databasen används verktyget Entity Framework Core [5]. Det
förenklar och abstraherar kommunikation mellan backend-servern och databasen.

Verktyget kopplar en klass i C#-koden på backend-servern till en tabell i databasen och
innehåller även funktionaliteten att uppdatera databasens tabeller efter en ändring har
gjorts i koden.

Fördelen med att använda ett sådant verktyg är att all data som hämtas från databasen
garanterat har rätt typ. Det förenklar för utvecklarna att skriva mer koncis och säker kod.
Eftersom databasens struktur definieras i koden kan den användas som referens av
utvecklarna utan att behöva öppna ett annat program, den kan även av samma anledning
enkelt återskapas för en ny miljö, exempelvis en testningsmiljö.

7.2. API
Mellan backend-servern och frontend-servern kommer en API finnas som gränssnitt. Målet
med API:n är att abstrahera bort så mycket som möjligt från frontend-servern så att den
enkelt kan hämta alla data den behöver för att generera en webbsida med ideellt ett anrop.
Alternativet är att istället behöva göra ett stort antal anrop till API:n för att sedan filtrera
alla data som hämtats. Det separerar även ansvaret mellan backend-servern och frontend-
servern där backend-serverns jobb är att hantera data och frontend-serverns jobb att
generera webbsidor. API:n kommer använda sig utav designmöstret fasad (Avsnitt 6.2)
genom att ge frontend-servern ett simpelt gränssnitt för att hämta data som gömmer
komplexiteten av att samla ihop den data.

15 / 15

	1. Referenser
	2. Inledning
	2.1. Syfte
	2.2. Arkitekturella mål och filosofi
	2.3. Antaganden och beroenden

	3. Systemet
	3.1. Översikt på systemet
	3.2. Datatyper
	3.2.1. Hårda datatyper
	3.2.2. Tunna datatyper

	3.3. Dataserialisering
	3.4. Systemanatomi
	3.5. Struktur på databas

	4. Arkitekturpåverkande krav
	5. Val och begränsningar
	5.1. Systemövergripande
	5.2. Frontend
	5.3. Backend
	5.4. Utvecklingsmiljö

	6. Designmönster
	6.1. Two-tier, Thin-client
	6.2. Fasad

	7. Abstraktioner
	7.1. Entity Framework Core
	7.2. API

