
Linköpings universitet | Institutionen för datavetenskap

Examensarbete på grundnivå, 15hp | Datateknik

2025 | LIU-IDA/LITH-EX-G–25/031–SE

TIDIG - Tidredovisningssystem för

Digitaliseringsavdelningen på LiU

TIDIG - Time Reporting System for the Digitalisation

Division at LiU

Alice Almgren
Axel Berg
Simon Gunnarsson
Isabel Neubauer
Anton Taber
Jakob Tormalm
Samuel Tuvstedt
Samuel Åkesson
Stina Åström

Handledare: Eric Ekström

Examinator: Lena Buffoni

Linköpings universitet

SE–581 83 Linköping

013-28 10 00, www.liu.se

Upphovsrätt
Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under

25 år från publiceringsdatum under förutsättning att inga extraordinära omständigheter

uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva

ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell

forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt

kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovs

mannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns

lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt

att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av

dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presen

teras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens

litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linkö

ping University Electronic Press se förlagets hemsida https://ep.liu.se/ .

Copyright
The publishers will keep this document online on the Internet – or its possible replace

ment – for a period of 25 years starting from the date of publication barring exceptional

circumstances. The online availability of the document implies permanent permission

for anyone to read, to download, or to print out single copies for his/hers own use and

to use it unchanged for non-commercial research and educational purpose. Subsequent

transfers of copyright cannot revoke this permission. All other uses of the document are

conditional upon the consent of the copyright owner. The publisher has taken technical

and administrative measures to assure authenticity, security and accessibility. According

to intellectual property law the author has the right to be mentioned when his/her work

is accessed as described above and to be protected against infringement. For additional

information about the Linköping University Electronic Press and its procedures for

publication and for assurance of document integrity, please refer to its www home page:

https://ep.liu.se/.

©

Alice Almgren

Axel Berg

Simon Gunnarsson

Isabel Neubauer

Anton Taber

Jakob Tormalm

Samuel Tuvstedt

Samuel Åkesson

Stina Åström

ii

https://ep.liu.se/
https://ep.liu.se/

Sammanfattning
Den här kandidatrapporten redogör för arbetsprocessen och utvecklingen av ett
tidredovisningssystem som beställts av Digitaliseringsavdelningen (DIGIT) vid
Linköpings universitet. Rapporten behandlar frågeställningar kring hur man kan
skapa värde för kunden, vilka erfarenheter som kan vara värdefulla för framtida
projekt, nyttan av att skapa och följa upp en systemanatomi samt konsekvenserna
av att dela upp en webbapplikation i frontend- respektive backend-servrar med
separata arbetsgrupper. Slutsatser som drogs inkluderar att användningen av ett
Scrum-ramverk med tydliga sprintuppgifter bidrog till ökad produktivitet. Samti
digt visade det sig att uppdelningen mellan frontend och backend ställde höga
krav på kommunikation mellan grupperna, men möjliggjorde också ett effektivt
parallellt arbete. En viktig teknisk lärdom var att tidig planering av datatyper
och databasschema underlättade implementationen för både frontend och backend.
Den färdiga produktens användbarhet uppmättes till ett genomsnittligt värde på

79 enligt SUS-metoden, vilket indikerar en god användarupplevelse.

Abstract
This bachelor’s thesis details the work process and development of a time reporting
system commissioned by the Digitalization Division (DIGIT) at Linköping Univer
sity. The report addresses questions regarding how to provide value for the client,
which experiences may be valuable for future projects, the benefits of creating and
following a system anatomy, and the consequences of separating a web application
into frontend and backend servers with separate development teams. Key findings
include that the use of a Scrum framework with clearly defined sprint tasks
contributed to increased productivity. Furthermore, the division between frontend
and backend imposed high demands on communication between the teams but
also enabled efficient parallel work. An important technical lesson was that early
planning of data types and database schema facilitated implementation for both
frontend and backend. The final product’s usability was measured according to the

SUS method to an average score of 79, indicating a good user experience.

iii

Tillkännagivanden
Vi riktar ett uppriktigt och stort tack till vår handledare Eric Ekström för det
stöd och den vägledning som tillhandahållits under genomförandet av detta kandi
datarbete. Vi önskar även tacka vår uppdragsgivare, Digitaliseringsavdelningen vid
Linköpings universitet, som har möjliggjort detta projekt. Slutligen vill vi framföra
vårt tack till examinator Lena Buffoni och Linköpings universitet.

iv

Innehåll
Tillkännagivanden . ⁠iv

Figurer . ⁠viii

Tabeller . ⁠ix

Ordlista . ⁠x

Projektspecifika termer . ⁠x
Generella termer . ⁠x

1 Inledning . ⁠1

1.1 Motivering . ⁠1
1.2 Syfte . ⁠1
1.3 Frågeställning . ⁠1
1.4 Avgränsningar . ⁠2
1.5 Kontext . ⁠2

1.5.1 Dokument tillhörande kandidatarbetet . ⁠2
1.5.2 Roller och ansvar . ⁠2

2 Bakgrund . ⁠4

2.1 Kundens bakgrund . ⁠4
2.2 Projektgruppens bakgrund . ⁠4

3 Teori . ⁠6

3.1 Programspråk, ramverk och bibliotek . ⁠6
3.1.1 HTML . ⁠6
3.1.2 CSS . ⁠6
3.1.3 Tailwind CSS . ⁠6
3.1.4 DaisyUI . ⁠6
3.1.5 JavaScript . ⁠7
3.1.6 TypeScript . ⁠7
3.1.7 Svelte . ⁠7
3.1.8 C# och .NET . ⁠7
3.1.9 ASP.NET . ⁠7
3.1.10 Entity Framework Core . ⁠7

3.2 Arbetsprocesser . ⁠8
3.2.1 Fasplanering . ⁠8
3.2.2 Scrum . ⁠8
3.2.3 System Usability Scale (SUS) . ⁠9
3.2.4 Sustainability Awareness Framework (SusAF) ⁠10

3.3 Verktyg . ⁠10
3.3.1 Systemanatomi . ⁠10
3.3.2 Kanban-bräde . ⁠10
3.3.3 Azure DevOps . ⁠10
3.3.4 Figma . ⁠11
3.3.5 Visual Studio Code . ⁠11

4 Metod . ⁠12

4.1 Projektets faser . ⁠12
4.2 Inledande arbetet . ⁠12
4.3 Utbildning i form av workshoppar . ⁠13

v

4.4 Arbetsuppdelning i frontend och backend . ⁠13
4.5 Utveckling av arbetsprocess . ⁠14
4.6 Kvalitetsmätningar . ⁠14
4.7 Erfarenhetsinsamling . ⁠15

4.7.1 Utvärdering av process . ⁠15
4.7.2 Utvärderingsformulär . ⁠15
4.7.3 Processdokumentation . ⁠15

4.8 Systemanatomi . ⁠16
4.8.1 Utvärdering av systemanatomin . ⁠17

5 Resultat . ⁠18

5.1 Värde för kunden . ⁠18
5.2 Kvalitetsmätningar . ⁠18
5.3 Processbeskrivning . ⁠19

5.3.1 Process i fokus . ⁠19
5.3.2 Utvärdering av process . ⁠20

5.4 SusAF . ⁠22
5.5 Gemensamma erfarenheter . ⁠23

5.5.1 Processrelaterade erfarenheter . ⁠23
5.5.2 Tekniska erfarenheter . ⁠24

5.6 Systemanatomi . ⁠25
5.7 Utvärdering av systemanatomins betydelse . ⁠26
5.8 Systembeskrivning . ⁠27

5.8.1 Frontend . ⁠27
5.8.2 Backend . ⁠31
5.8.3 Uppdelningen av frontend- och backend-server ⁠31
5.8.4 Uppdelning i separata arbetsgrupper för frontend och backend . . ⁠32

6 Diskussion . ⁠33

6.1 Resultat . ⁠33
6.1.1 Mätningar på process . ⁠33
6.1.2 Kvalitetstester . ⁠34
6.1.3 Programmeringsspråk och ramverk . ⁠34
6.1.4 Processrelaterade erfarenheter . ⁠34
6.1.5 Tekniska erfarenheter . ⁠38
6.1.6 Systemanatomins upplevda värde . ⁠39
6.1.7 Uppdelningen frontend-backend . ⁠39

6.2 Metod . ⁠41
6.2.1 Kundkontakt . ⁠41
6.2.2 Användarundersökningar . ⁠41
6.2.3 Design av applikationen . ⁠42
6.2.4 Scrum och samarbete med kunden . ⁠42
6.2.5 Erfarenhetsinsamling . ⁠42
6.2.6 Skapande av systemanatomi . ⁠43
6.2.7 Uppföljning av systemanatomi . ⁠43
6.2.8 Källkritik . ⁠43

6.3 Arbetet i vidare sammanhang . ⁠44

vi

6.3.1 Etiska aspekter . ⁠44
6.3.2 Strukturella aspekter . ⁠44
6.3.3 Individuella aspekter . ⁠44
6.3.4 Sociala aspekter . ⁠45
6.3.5 Tekniska aspekter . ⁠45
6.3.6 Ekonomiska aspekter . ⁠45
6.3.7 Miljömässiga aspekter . ⁠45

7 Slutsatser . ⁠46

7.1 Hur kan tidredovisningssystemet TIDIG implementeras så att man
skapar värde för kunden? . ⁠46

7.2 Vilka erfarenheter kan dokumenteras från TIDIG som kan vara
intressanta för framtida projekt? . ⁠46

7.3 Vilket stöd kan man få genom att skapa och följa upp en
systemanatomi? . ⁠47

7.4 Vilka för- och nackdelar finns med att dela upp en webbapplikation som
TIDIG i en frontend- respektive backend-server med separata
arbetsgrupper? . ⁠47

8 Referenser . ⁠48

vii

Figurer

Figur 1 Sprintuppgifternas placering i Kanban-brädet i slutet av varje

sprint. ⁠21

Figur 2 SusAD över produkten . ⁠22

Figur 3 Systemanatomi . ⁠26

Figur 4 Tidredovisningsvyn i TIDIG . ⁠28

Figur 5 Uppgiftsvyn i TIDIG . ⁠28

Figur 6 Rapportvyn i TIDIG . ⁠29

Figur 7 Statistikvyn i TIDIG . ⁠30

Figur 8 Profilvyn i TIDIG . ⁠31

Figur 9 Blockschema över systemet TIDIG . ⁠32

viii

Tabeller

Tabell 1 Projektspecifika termer som används i rapporten ⁠x

Tabell 2 Generella termer som används i rapporten ⁠x

Tabell 3 Resultatet av LCP-mätningar i sekunder ⁠18

Tabell 4 Resultat från SUS tester . ⁠19

Tabell 5 Medelresultat på reflektionsformulär . ⁠20

Tabell 6 Gruppens svar på frågor kring systemanatomins

användning. ⁠26

ix

Ordlista

Projektspecifika termer

Tabell 1: Projektspecifika termer som används i rapporten

Administratör En användare som kan hantera uppgifter och skapa rapporter och
sammanställningar

Aktivitet Ett ID som används för att koppla en uppgift till faktureringställe

DIGIT Digitaliseringsavdelningen vid LiU

LiU Linköpings Universitet

Roll En användares roll i systemet, tidredovisare eller administratör

TIDIG Tidredovisningssystem för Digitaliseringsavdelningen

Tidredovisare LiU-medarbetare som redovisar arbetad tid

Tidredovisning Processen där tidredovisare rapporterar tid arbetad på uppgifter

Uppgift En arbetsuppgift som tidredovisare kan rapportera tid till

Generella termer

Tabell 2: Generella termer som används i rapporten

Azure En samling molnbaserade tjänster tillhandahållet av Microsoft

Backend Den delen av systemet som behövs för att bland annat interagera
med databas och autentisera användare

.csv Ett filformat. Står för Comma separated values

Discord En kommunikationstjänst som erbjuder röstsamtal

EER-diagram Extended Entity Relationship, en datamodell för databasdesign

Feature freeze Sista fasen i en mjukvaruprodukt, när inga fler funktioner ska
byggas, utan endast finjusteringar och buggfix återstår.

Frontend Den delen av systemet som användare upplever och interagerar
med. I projektets fall är det webbsidan.

Kanban En agil metod för att visualisera arbetsflöden och hantera
pågående arbete genom en tavla

LCP Largest contentful paint [1]. En metod för att mäta prestanda.
LCP är tiden i sekunder det tar för det största elementet på en
webbsida att ladda in

LiU-ID Ett användarnamn som används för digitala tjänster på
Linköpings universitet

Produktbacklogg Lista över prioriterade funktioner och krav som ska utvecklas i
produkten

Produktägare Ansvarig för produktbackloggen, prioriterar krav och ser till att
teamet skapar värde under sprintar

x

Scrum Master En coach som säkerställer att scrumprocessen följs och stödjer
teamet under sprintar

Sprint En tidsbegränsad arbetscykel i Scrum som varar en till fyra
veckor, där teamet utvecklar och implementerar uppgifter och
funktioner från sprintbackloggen

Sprintbacklogg De uppgifter och funktioner som valts ut från produktbackloggen
för den aktuella sprinten

Sprintplanering Ett möte där teamet väljer vilka uppgifter som ska genomföras
under den kommande sprinten

Sprint review Ett möte i slutet av en sprint där teamet redovisar vilka
uppgifter och funktioner som har eller inte har levererats under
den senaste sprinten

Sprint

retrospektiv

Ett möte i slutet av en sprint där teamet reflekterar över hur det
gått, samt identifierar förbättringsområden till kommande
sprintar

SQL Structured Query Language. Ett standardspråk för
databashantering

SSO Single Sign On, ett verktyg för autentisering av användare

Utvecklingsteam En grupp som utvecklar och levererar funktionalitet i sprintar

xi

1 Inledning

Den här rapporten redogör det kandidatarbetet som utfördes våren 2025 av gruppen
PUM02 i kursen TDDD96 på Linköpings universitet (LiU). Arbetet handlade om
att skapa det webbaserade tidredovisningssystemet TIDIG (Tidredovisningssystem
för Digitaliseringsavdelningen) till DIGIT (Digitaliseringsavdelningen på LiU).

1.1 Motivering
DIGIT har under lång tid haft ett undermåligt system för tidredovisning för sina
anställda. De anställda arbetar ofta på flera projekt parallellt och måste därmed
redovisa hur mycket tid de lägger på respektive projekt. Detta är viktigt då de
anställdas tidredovisning är underlag för fakturering till diverse kunder. Det nuva
rande systemet saknar ett användarvänligt gränssnitt.

1.2 Syfte
Syftet med projektet är att utveckla en användarvänlig och effektiv lösning för
tidsrapportering, anpassad efter DIGIT:s behov. Som en del av detta skapas en
systemanatomi vars stöd för projektets genomförande utvärderas i rapporten.

Rapporten syftar även till att identifiera erfarenheter gällande att arbeta i
en projektgrupp för att utveckla en mjukvaruprodukt. Rapporten behandlar också
effekten av att arbeta med Scrum och uppdelningen i två tydliga arbetsgrupper för
frontend respektive backend vid utvecklingen av en webbapplikation.

1.3 Frågeställning
Rapporten besvarar följande frågeställningar:
1. Hur kan tidredovisningssystemet TIDIG implementeras så att man skapar värde

för kunden?
2. Vilka erfarenheter kan dokumenteras från TIDIG som kan vara intressanta för

framtida projekt?
3. Vilket stöd kan man få genom att skapa och följa upp en systemanatomi?
4. Vilka för- och nackdelar finns med att dela upp en webbapplikation som TIDIG

i en frontend- respektive backend-server med separata arbetsgrupper?

1

1.4 Avgränsningar
Arbetet och projektet har haft följande avgränsningar baserat på kurskrav, kundens
krav och projektgruppens val.
Från kurs:

• Projektets omfattning begränsades till totalt 3600 timmar, vilket innebär 400
timmar per gruppmedlem för 9 medlemmar.

Från kund:

• Produkten stödjer inloggning med LiU-ID via LiU-SSO men andra autentise
ringslösningar inkluderas inte.

• Produkten följer LiU:s grafiska profil samt uppfyller tillgänglighetskraven EN
301 549 [2] och WCAG 2.1 [3].

• Produktens backend är baserad på C# och ASP.NET, och systemet driftsätts
på DIGIT:s egna servrar.

Från projektgrupp:

• Produktens gränssnitt är på svenska och koden skrivs på engelska. Inga andra
språk används.

1.5 Kontext
Kursen Kandidatprojekt i programvaruutveckling med kurskod TDDD96 ges av
Linköpings Universitet till studenter som går civilingenjörslinjer inom datateknik
och mjukvaruteknik. Kursens upplägg består i huvudsak av att studenter, uppdelade
i grupper om åtta till nio personer, åtar sig ett projekt från en extern uppdragsgivare
och skriver ett gemensamt kandidatarbete utifrån det projektet. I kursen ingår
också en individuell erfarenhetssammanfattning där vardera student beskriver sina
erfarenheter under projektet. Vidare ingår också föreläsningar, seminarium och en
konferens då projektet presenteras för resterande kursdeltagare. Kandidatgrupperna
hade stöd och vägledning av en handledare som de träffade varje vecka.

1.5.1 Dokument tillhörande kandidatarbetet

Utöver denna kandidatrapport har andra dokument upprättats. Dessa dokument
är följande:
• Arkitekturdokument
• Gruppkontrakt
• Kravspecifikation
• Kvalitetsplan
• Projektplan
• Testplan

1.5.2 Roller och ansvar

Kandidatgruppen som är ansvarig för kandidatarbetet består av nio tredjeårsstu
denter varav fyra medlemmar studerar civilingenjörsutbildningen i datateknik och
fem medlemmar studerar civilingenjörsutbildningen i mjukvaruteknik. Varje enskild
projektmedlem har en specifik grupproll med tillhörande ansvar. Nedan listas dessa
roller och en kort beskrivning följer sedan gällande deras relaterade ansvar.

Teamledare: Teamledaren ansvarar för att leda och fördela arbetet inom
gruppen. Hen ser också till att målen uppfylls och att processer följs. Vidare agerar

2

teamledaren coach och ser till att det råder god arbetsmiljö. Teamledaren represen
terar kandidatgruppen utåt och ansvarar för att en projektplan skrivs. Teamledaren
har rätt att ta det slutgiltiga beslutet om det behövs för att arbetet ska fortskrida.

Analysansvarig: Analysansvarig ansvarar för att hålla kontakten med kunden
som beställt produkten. Hen tar reda på kundens verkliga behov och agerar
förhandlingspart och ger insyn mot övriga gruppen. Analysansvarig ansvarar för
kravspecifikationen, att kraven dokumenteras och ser till att kraven uppfylls.

Arkitekt: Arkitekten ansvarar för arkitekturdokumentet och att arkitekturen
över produkten dokumenteras. Hen ser till att en stabil arkitektur tas fram och
identifierar komponenter och gränssnitt. Arkitekten har rätt att ta övergripande
teknikval och har, om det behövs, det sista ordet i tekniska frågor efter teamledaren.
Sist behöver arkitekten kunna kommunicera bärande idéer.

Dokumentansvarig: Dokumentansvarig ansvarar för att ta fram dokument
mallar som ska användas under projektet och underhållning av dessa. Hen ser till
att en logotyp tas fram, skapar ändringsrutiner och ansvarar för att leveranser sker
till gruppens deadlines.

Kvalitetssamordnare: Kvalitetsarbete utförs av alla roller genomgående
under alla delar i projektet. Kvalitetssamordnare ansvarar i synnerhet för initiativ
tagande och har uppföljningsansvar gällande kvalitetsarbetet. Hen ser också till
att erfarenheter dokumenteras och att en kvalitetsplan skrivs och efterföljs. Vidare
ansvarar hen för gruppens utbildning och ger inspiration till fortsatt kvalitetsarbete.
Kvalitetssamordnaren planerar och budgeterar med övriga i gruppen och ser över
hur mycket kvalitet får kosta.

Konfigurationsansvarig: Konfigurationsansvarig bestämmer vad som skall
versionshanteras och vilka ändringar som ingår i en utgåva (eng. release). Hen
ansvarar för att välja och underhålla verktyg för versions- och konfigurationshan
tering. Sist ser konfigurationsansvarig till att verktygen används på rätt sätt under
projektet.

Testledare: Testledaren beslutar om systemets status och sköter den dyna
miska verifieringen och valideringen av systemet genom exekvering. Vidare ansvarar
hen för att en testplan skrivs och att tester rapporteras. Hen ser också till att hålla
rimlig distans till det som testas. Sist testar testledaren kvalitetskraven tillsammans
med kvalitetssamordnaren.

Backendutvecklingsledare: Backendutvecklingsledaren ansvarar för den
detaljerade designen av produkten. Hen ansvarar för att leda och fördela utveck
lingsarbetet för backenddelen av projektet. Backendutvecklingsledaren har rätt att
fatta beslut om utvecklingsmiljö och ser till att organisera projektmedlemmarnas
tester.

Frontendutvecklingsledare: Frontendutvecklingsledare ansvarar för den
detaljerade designen av produkten. Hen ansvarar för att leda och fördela utveck
lingsarbetet för frontenddelen av projektet. Frontendutvecklingsledaren har rätt att
fatta beslut om utvecklingsmiljö och ser till att organisera projektmedlemmarnas
tester.

3

2 Bakgrund

Kapitlet redogör för kundens bakgrund till projektet samt projektgruppens tidigare
erfarenheter av liknande projektarbeten och relevanta kompetenser.

2.1 Kundens bakgrund
DIGIT på LiU startade år 2023 och arbetar med att tillhandahålla, utveckla och
förvalta en IT-miljö för medarbetare och studenter på universitetet. De strävar
att leverera användarcentrerade lösningar med universitetets behov i fokus som är
säkra, stabila och kostnadseffektiva [4].

DIGIT är uppdelad i åtta enheter med olika ansvarsområden som sam
verkar och träffas regelbundet. Enheterna heter Applikationsenheten, Digitala
resursenheten, Projekt- och utvecklingsenheten, IT-arbetsplatsenheten, IT-infra
strukturenheten, IT-serviceenheten och Nära IT-stödenheten [4]. Det nuvarande
tidredovisningssystemet skapar främst värde för applikationsenheten och projekt
utvecklingsenheten.

2.2 Projektgruppens bakgrund
Projektgruppen har teoretisk kunskap inom programutvecklingsmetodik från kursen
TDDC93 - Programutvecklingsmetodik. Även om de flesta saknar praktisk erfaren
het att tillämpa metoderna i projektarbeten har medlemmarna en grundläggande
förståelse vad gäller agila arbetsmetoder, kravhantering och systemdesign. Vidare
har samtliga projektmedlemmarna erfarenheter av teamarbete från projektarbeten i
sina studier. För studenterna inom datateknik har kurserna TSEA29 - Konstruktion

med mikrodatorer och TSEA83 - Datorkonstruktion givit viktiga erfarenheter av att
arbeta utifrån en kravspecifikation och en projektplan.

Utöver detta har projektmedlemmarna deltagit i ett flertal datorlaborationer
inom olika kurser med samarbete i par. Vissa medlemmar i projektgruppen har
även egna erfarenheter av mjukvaruutveckling, projektarbete och teamarbete genom
ideellt arbete och fritidsaktiviteter.

Med dessa erfarenheter är projektgruppen överens om att planering är viktigt
för att säkerställa jämn arbetsbelastning. Preliminära veckoplaneringar och regel
bundna möten är fördelaktiga eftersom det ger en tydlig överblick av projektets
framgång. Kommunikation ses som en av de viktigaste faktorerna för ett framgångs
rikt projekt och det är viktigt att alla projektmedlemmar tar eget ansvar för att
bidra till ett effektivt samarbete.

4

Det finns en bred kunskapsresurs i projektgruppen inom webbprogrammering.
Vissa i projektgruppen har erfarenheter av frontend-utveckling från personliga
projekt i samma skala som kandidatprojektet. Däremot finns potential för utveck
ling inom det programmeringsspråk som ska användas för frontend, TypeScript och
Svelte-ramverket. Det ska också nämnas att studenterna inom mjukvaruteknik har
erfarenhet inom systemutveckling som involverar både frontend och backend från
kursen TDDD80 - Projekt: Mobila och sociala applikationer.

Gällande backend-utveckling har en del i gruppen erfarenhet av databaser, SQL
och molnplattformen Azure från tidigare kurser. En begränsning finns då program
meringsspråket som ska användas för backend är C#, vilket är ett språk som få
har erfarenhet av. Däremot har samtliga i gruppen läst kursen TDDE30/TDDD78

- Objektorienterad programmering och Java som troligtvis underlättar inlärning och
objektorienterad programmering i C#. Vidare finns det bristande kunskap om hur
ramverket ASP.NET fungerar.

5

3 Teori

Detta kapitel beskriver den relevanta teorin och lägger grund för att besvara
frågeställningarna i Avsnitt 1.3. Detta innefattar programspråk, ramverk, bibliotek,
arbetsmetoder och verktyg.

3.1 Programspråk, ramverk och bibliotek
För att utveckla produkten har gruppen tagit hjälp av ett flertal programspråk,
ramverk och bibliotek vilka är beskrivna nedan.

3.1.1 HTML

HTML är en förkortning av Hyper Text Markup Language och är den teknologi som
definierar strukturen och innehållet för webbsidor [5]. Genom olika element som till
exempel text, bilder och sektioner, utgör HTML grunden för att bygga webbsidor.

3.1.2 CSS

CSS står för Cascading Style Sheets och är ett språk som används för att ge webbsi
dor sin layout och utseende [6]. Den styr hur HTML-elementen ska visas på skärmen
genom att exempelvis definiera positionering, färger, typsnitt och marginaler. I CSS
definieras grupper av stilregler i klasser, vilka kan appliceras på HTML-element för
att ändra deras utseende.

3.1.3 Tailwind CSS

Tailwind CSS är ett CSS-ramverk som tillåter utvecklare att skriva CSS direkt i
HTML [7]. Ramverket är ”utility-first”, vilket innebär att en uppsättning fördefini
erade klasser används istället för att skapa egna CSS-regler. Detta möjliggör snabb
och effektiv utveckling av webbapplikationer. Tailwind CSS innehåller klasser för
att hantera layout, marginaler och textanpassning.

3.1.4 DaisyUI

DaisyUI är ett insticksprogram till Tailwind CSS som förenklar utvecklingen av
användargränssnitt genom att tillhandahålla färdiga komponenter [8]. Den inne
håller klassnamn som hjälper utvecklaren att designa och anpassa grundläggande
komponenter såsom knappar, textrutor, sökrutor med mera. Detta resulterar i att
utvecklaren behöver skriva mindre kod och därmed sparar tid.

6

3.1.5 JavaScript

JavaScript är ett dynamiskt och objektorienterat programmeringsspråk som an
vänds för att skapa interaktivitet och manipulera objekt inom en värdmiljö,
vanligtvis webbläsare [9]. Språket erbjuder en flexibel syntax utan typdeklarationer
och bygger på objekt med egenskaper och metoder. JavaScript är en grundpelare
för modern webbutveckling.

3.1.6 TypeScript

TypeScript är ett programmeringsspråk som bygger på JavaScript och tillför statisk
typning [10]. Det kompileras till JavaScript och kan därför köras i alla miljöer där
JavaScript fungerar. TypeScript gör det möjligt att upptäcka typrelaterade fel redan
vid kompilering, vilket ökar kodens säkerhet och underlättar underhåll. Språket
behåller JavaScripts objektorienterade och dynamiska karaktär men adderar verk
tyg för att hantera större och mer komplexa kodbaser.

3.1.7 Svelte

Svelte är ett modernt ramverk för utveckling av webbapplikationer, som kan använ
das med JavaScript eller TypeScript [11]. Svelte använder inte en virtuell DOM till
skillnad från andra populära ramverk såsom React och Angular. Detta innebär att
koden kompileras till optimerad JavaScript som endast uppdaterar specifika delar
av DOM:en vid behov, vilket resulterar i bättre prestanda.

En fördel med Svelte är dess enkelhet, då inga ytterligare bibliotek eller
beroenden krävs [11]. Dessutom har ramverket en lättförståelig och intuitiv syntax
vilket gör det lämpligt för nybörjare inom webbprogrammering.

3.1.8 C# och .NET

C# är ett objektorienterat programmeringsspråk utvecklat av Microsoft [12]. Det
används inom bland annat utveckling av hemsidor och datorspel och har fördelarna
att det fungerar på många plattformar och har en stor och aktiv användarbas.

.NET är utvecklingsplattformen som C# körs på. Den innehåller runtime-
miljön, standardbibliotek, kompilatorer och verktyg som behövs för att bygga, köra
och distribuera applikationer.

3.1.9 ASP.NET

ASP.NET är ett ramverk för att utveckla webbservrar i .NET [13]. Alla ändpunkter
definieras som metoder i klasser, där dessa klasser kallas för ”controllers”. Varje
metod motsvarar ett HTTP-anrop, till exempel GET eller POST, och returnerar
vanligtvis ett svar i form av HTML, JSON eller en statuskod.

3.1.10 Entity Framework Core

Entity Framework Core är ett verktyg för att förenkla och abstrahera kommunika
tionen mellan ett .NET-program och en databas [14]. Verktyget kopplar en klass
i C#-koden i .NET-programmet till en tabell i databasen och innehåller även
funktionaliteten att uppdatera databasens tabeller efter att en ändring har gjorts i
koden.

7

3.2 Arbetsprocesser
De arbetsprocesser som projektgruppen har arbetat med under projektet och konti
nuerligt utvärderat förklaras nedan i detalj.

3.2.1 Fasplanering

Ett projektarbete kan delas in i fyra faser [15], [16]. Den första fasen är analys

fasen. Syftet med analysfasen är att projektgruppen ska förbereda sig genom att
analysera hur projektet ska se ut, bilda sig en uppfattning om hur slutprodukten
ska bli och säkerställa att det går att genomföra projektet så att kundens krav
och behov blir uppfyllda. Den andra fasen är planeringsfasen som är till för att
realisera projektbilden och upprätta projektplaner. Efter planeringsfasen kommer
genomförandefasen vars syfte är att realisera planer och design som tidigare
skapats. Den består i sin tur av en etablering-, realisering- och överlämningsfas.
Under etableringsfasen påbörjas genomförandet av projektet och verifiering av att
planeringen följs. Därefter kommer realiseringsfasen som är den fas där projektets
slutresultat tas fram. I den här fasen implementeras designen som tagits fram i
etableringsfasen. Vid start av överlämningsfasen är produkten färdigtestad och all
dokumentation är upprättad. Vidare blir kund informerad om hur de använder och
underhåller produkten. Projektets slutresultat överlämnas och det säkerställs att
allt blir formellt accepterat av kunden. Den sista fasen är avslutningsfasen och under
denna fas dokumenteras erfarenheter från projektets gång.

3.2.2 Scrum

Scrum är en agil arbetsmetod där små tvärfunktionella team samarbetar för att
utveckla en produkt i korta cykler, kallade sprintar [17]. I slutet av varje sprint
presenteras en fungerande version av produkten.

3.2.2.1 Roller

I Scrum tilldelas de olika projektmedlemmarna olika roller med olika ansvarsom
råden såsom produktägare, Scrum master och utvecklingsteam [18]. Scrum master
fungerar som en coach och säkerställer att Scrum följs, och ser till att teamet arbetar
effektivt. Produktägare representerar kunden och ansvarar för produktbackloggen.
Utvecklingsteamet består av ett antal utvecklare som producerar mjukvaran.

3.2.2.2 Möten

En sprint består av flera aktiviteter såsom sprintplaneringsmöte, dagligt Scrum-
möte, sprint review och sprint retrospektiv [18]. Dessa aktiviteter syftar till att
strukturera och utvärdera och kontinuerligt förbättra arbetet.

Sprinten startar med en sprintplanering där produktägaren tillsammans med
teamet bestämmer vad som ska implementeras under denna sprint [18]. Varje
arbetsdag hålls även ett dagligt Scrum-möte på ungefär 15 minuter då samtliga
teammedlemmar uppdaterar varandra om sitt arbete och kan be om hjälp vid
behov. Under mötet svarade varje projektmedlem på följande frågor:
• Vad har du gjort sedan senaste mötet?
• Vad ska du göra fram till nästa möte?
• Har du fastnat på något och behöver hjälp?

8

Sprint review är ett möte som hålls i slutet av varje sprint [18]. Produkten inspek
teras och produktbackloggen ändras vid behov. Utvecklingsteamet demonstrerar
arbetet, besvarar frågor, diskuterar vad som gick bra, problemen som de stötte på
och hur dessa löstes. Teamet diskuterar även vad som är nästa steg i implemente
ringen.

Sprint retrospektiv är ett möte som hålls sista dagen av sprinten, efter sprint
review [18]. Teammedlemmarna diskuterar resultatet, lärdomar och tar med sig
detta inför planeringen av nästa sprint.

3.2.2.3 Backlogg

Varje sprint har en tillhörande sprint backlogg som är en ordnad lista med de
uppgifter som ska genomföras under den givna tidsperioden [18]. Denna backlogg
baseras på produktbackloggen som innehåller de krav och användarhistorier som är
kvar att implementera och hanteras utav produktägaren.

3.2.3 System Usability Scale (SUS)

SUS (System Usability Scale) är en skala som mäter användbarhet på system
[19]. Den genomförs i samband med användartestning efter att en användare har
använt exempelvis en webbsida. Den baseras på 10 påståenden som användare ska
rangordna på en skala 1-5. En femma innebär att de håller med helt och hållet,
medan en etta innebär att de verkligen inte håller med. Följande påståenden ingår
i SUS-formuläret:

1. Jag tror att jag skulle vilja använda denna produkt ofta.
2. Jag tyckte att denna produkt var onödigt komplicerad.
3. Jag tyckte att denna produkt var lätt att använda.
4. Jag tror att jag kommer behöva hjälp av en teknisk person för att kunna

använda denna produkt.
5. Jag tycker att de olika funktionerna i denna produkt är väl samordnade.
6. Jag tyckte att det var för mycket inkonsekvens i produkten.
7. Jag kan tänka mig att de flesta skulle lära sig att använda denna produkt

mycket snabbt.
8. Jag tyckte att denna produkt var mycket besvärlig att använda.
9. Jag kände mig väldigt trygg när jag använde denna produkt.

10. Jag behövde lära mig mycket innan jag kunde komma igång med denna produkt.

𝑆 = 2.5 ⋅ ∑
10

𝑖=1
𝑠𝑖 (1)

𝑠𝑖 = {𝑥𝑖 − 1 , om 𝑖 är udda (1, 3, 5, 7, 9)
5 − 𝑥𝑖 , om 𝑖 är jämn (2, 4, 6, 8, 10) (2)

Baserat på användarnas svar beräknas en slutpoäng enligt Ekvation 1 och Ekva
tion 2 [19]. För udda numrerade frågor subtraheras 1 från poängen, medan jämnt
numrerade frågor beräknas genom att subtrahera poängen från 5, se Ekvation 2.
Detta beror på att udda frågor är positiva påståenden till skillnad från jämna som
är negativa påståenden. Justeringen resulterar i att alla frågor får en poäng mellan

9

1 och 4. Slutligen multipliceras summan av de justerade värdena med 2.5 för att få
en slutpoäng som varierar mellan 0 och 100.

Resultatet ger en bra indikation på systemets användbarhet, där ett högre
poäng indikerar bättre användbarhet [19]. En poäng på 51 eller lägre tyder på dålig
användbarhet och bör åtgärdas omedelbart. En poäng runt 68 anses vara acceptabel,
men det finns utrymme för förbättring. En poäng på 80.3 eller högre indikerar en
mycket bra användbarhet.

3.2.4 Sustainability Awareness Framework (SusAF)

Sustainability Awareness Framework (SusAF) [20] är en metod för att utvärdera en
produkts sociala, individuella, miljömässiga, tekniska samt ekonomiska hållbarhet.
Metoden genomförs genom att i grupp diskutera dimensionerna ur olika aspekter
enligt en förutbestämd mall.

Resultatet blir ett Sustainability Awareness Diagram (SusAD) som visualiserar
den direkta och indirekta effekten som produkten har på samhället. Varje effekt
kategoriseras efter dimension och hur direkt- eller indirekt effekten är.

3.3 Verktyg
Under arbetet med projektet har de nedan beskrivna verktygen använts av gruppen.

3.3.1 Systemanatomi

En systemanatomi är ett hjälpmedel för att visualisera och konkretisera funktio
naliteten av ett system. Järkvik [21, s. 14-16] väljer att definiera begreppet
systemanatomi som ett verktyg för att kommunicera om och planera system. Varje
byggblock i en systemanatomi kallas för en anatom, och motsvarar en användar
funktion [21].

3.3.2 Kanban-bräde

Kanban-bräde är ett verktyg som visualiserar arbetsflödet och ger en tydlig över
blick av arbetsfördelningen och framstegen [22]. Den består av kort som motsvarar
uppgifter som kan röra sig mellan olika kolumner i brädet som motsvarar olika
faser:
• Att göra: Uppgifter som ingår i sprintbackloggen men som ännu inte påbörjats.
• Pågående: Uppgifter som är under arbete men ännu inte färdigställda.
• Granskning: Uppgifter som är färdiga men ska granskas av en annan projekt

medlem.
• Godkänd: Uppgifter som är slutförda och godkända.
Kanban-bräden kan visualiseras i Azure DevOps som beskrivs i Avsnitt 3.3.3.

3.3.3 Azure DevOps

Azure DevOps är en plattform utvecklad av Microsoft med syftet att förenkla
processen att utveckla programvara [23]. Den innehåller agila verktyg som stödjer
arbete enligt Kanban och Scrum, inklusive olika typer av bräden. Det kan även
integreras med GitHub eller tillhandahålla Git-lagringsplatser. Dessutom innehåller
Azure DevOps verktyg för testning, kontinuerlig integrering och leverans. Under

10

arbetet användes även dess funktionalitet med Kanban-bräden och sprinter för att
organisera arbetet.

3.3.4 Figma

Figma är ett molnbaserat designverktyg för att skapa, dela och testa designer för
webbsidor, mobilapplikationer och andra digitala produkter [24]. Det möjliggör
samarbete i realtid, där flera personer kan redigera samtidigt. Verktyget innehåller
stöd för att skapa prototyper utan att skriva kod samt möjligheten att skapa åter
användbara UI-komponenter och andra användbara funktioner som effektiviserar
designprocessen.

3.3.5 Visual Studio Code

Visual Studio Code är en modern och lätthanterlig programutvecklingsmiljö som
utvecklats av Microsoft [25]. Den har stöd för de flesta programmeringsspråk
och kan köras på flera olika operativsystem. Den erbjuder flera smarta inbyggda
funktioner såsom inbyggd terminal, felsökningsverktyg och ett stort antal tillägg.
Dessutom finns det inbyggt stöd för Git, vilket gör det enklare att samarbeta med
andra utvecklare.

11

4 Metod

Detta kapitel beskriver de metoder som användes för att besvara frågeställningarna
som beskrivs i Avsnitt 1.3.

4.1 Projektets faser
I början av projektet skapades en projektplanering som omfattade en analysfas,
planeringsfas, genomförandefas och avslutningsfas. Fasplanen var som följande:
• I Analysfasen ingick att skriva kravspecifikation, utvärdera gruppens kapacitet

för projektet och genomföra en SusAF-analys. Syftet med SusAF-analysen var att
säkerställa en bra och hållbar slutprodukt och resultatet redovisas i Avsnitt 5.4.
För vidare information om analysfasen hänvisas läsaren till Avsnitt 4.2.

• Planeringsfasen utgick att planera projektet och skapa en design för TIDIG.
Relevanta planeringsdokumenten för vårt projekt var projektplanen och kvali
tetsplanen. Vidare skapades en testplan och designdokumenten systemanatomin
och arkitekturdokumentet skapades för att strukturera upp hur projektet skulle
utvecklas.

• Genomförandefasen realiserade planer och design som tidigare skapades.
‣ Under etableringsfasen utbildades medlemmar i projektets tekniker och en

bedömning gjordes utifrån planeringens realiserbarhet.
‣ Under realiseringsfasen genomfördes det som beskrivits i planeringen och

den design som tagit fram i etableringsfasen implementerades.
‣ Vid starten av överlämningsfasen var produkten färdigtestad och all doku

mentation var upprättad. Vidare blev kunden informerad om hur de använder
och underhåller produkten. Projektets slutresultat överlämnades och det säker
ställdes att allt blev formellt accepterat av kunden.

• Den sista fasen var avslutningsfasen. Under denna del av projektet dokumen
terades de olika erfarenheter från projektets gång. Varje medlem skrev, enligt
bedömningskriterierna för kandidatkursen, en individuell erfarenhetssamman
fattning och tillsammans skrev gruppen ett gemensamt kandidatarbete.

4.2 Inledande arbetet
Innan arbetet med produkten påbörjades behövde projektgruppen ta gemensamma
beslut gällande arbetssätt och roller. Ett gruppkontrakt togs fram för att fastställa
hur samarbetet i gruppen skulle fungera. För att ge en detaljerad bild av hur arbetet
skulle genomföras togs ett antal dokument fram, beskrivna i Avsnitt 1.5.1. Dessa

12

dokument uppdaterades och reviderades kontinuerligt under projektets gång för att
säkerställa att arbetsmetoderna följdes och att dokumentationen förblev aktuell.

Därefter beslutades vilka ramverk och programmeringsspråk som skulle an
vändas i projektet. Projektmedlemmar med tidigare erfarenhet presenterade och
motiverade sina val och därefter togs ett gemensamt beslut genom omröstning.

Det som avslutade det inledande arbetet av projektet var ett kundmöte där
kunden gick igenom sitt nuvarande system för projektgruppen och förklarade sitt
behov och sina förväntningar på det nya systemet. Detta lade grunden för de
dokument som framställts under projektet, särskilt för kravspecifikationen.

4.3 Utbildning i form av workshoppar
Innan utvecklingen av produkten påbörjades, anordnade gruppen två interna works
hoppar. Den ena workshoppen fokuserade på backend-utveckling och konfiguration
medan den andra fokuserade på frontend-utveckling. Alla uppmuntrades att delta
på båda workshopparna för att bekanta sig med de språk och verktyg som skulle
användas under projektets gång. Projektmedlemmar med kunskap inom vardera
tekniskt område ansvarade för att förbereda material och uppgifter till övriga med
lemmar. Innehållet i dessa workshoppar var en blandning av teoretisk genomgång
och praktiska moment, där projektmedlemmarna kunde diskutera, samarbeta och
dela kunskap med varandra.

Under backend- och konfigurationsworkshoppen introducerades och installera
des konfigurationsverktyg. Uppgiften på backend-workshoppen var att skapa två
ändpunkter, en för att ta emot en lista med redovisade tider och en för att lägga
till en redovisad tid. För utförandet fanns en enkel förberedd webbsida som visade
de redovisade tiderna och gjorde det möjligt att redovisa tid. Ytterligare en förbe
redelse var given kod med en lista som sparar redovisade tider som en startpunkt.

I workshoppen som fokuserade på frontend följde projektmedlemmarna en
handledning i ramverket Svelte där man fick skriva grundläggande kod i TypeScript.

4.4 Arbetsuppdelning i frontend och backend
Projektgruppen delades in i två huvudsakliga arbetsgrupper med fokus på frontend-
respektive backend-utveckling med egna utvecklingsledare. Utvecklingsledarna hade
ett större ansvar för att leda och samordna arbetet inom sin grupp. Uppdelningen
gjordes för att minimera förvirring och överlappande arbete. Genom att dela upp
gruppen kunde medlemmarnas varierande kompetens tas tillvara på. Vissa hade
sedan tidigare mer erfarenhet av backend och andra av frontend, vilket gjorde det
naturligt att arbeta i separata spår.

Valet att arbeta uppdelat grundade sig också i projektmedlemmarnas individu
ella intressen. Flera av projektmedlemmarna tyckte olika delar av utvecklingsarbetet
verkade mer givande. Dessutom speglade valet kring uppdelningen gruppens upp
fattning om hur ett projektteam skulle vara strukturerat, med arbetsuppgifter
fördelade efter kompetens och intresse.

Grupperna arbetade till stor del självständigt, med egna möten och separata
sprintuppgifter. Utöver detta samlades hela projektgruppen två gånger per sprint
för gemensamma sprintmöten och avstämning.

13

Samarbete mellan grupperna skedde löpande under projektets gång, främst när
nya gränssnitt implementerades och krävde ny logik från backend-servern. Syftet var
att skapa tydliga ansvarsområden inom respektive arbetsgrupp, samtidigt som varje
medlem skulle behålla en god helhetsförståelse genom regelbunden kommunikation.

4.5 Utveckling av arbetsprocess
Projektgruppen valde att inledningsvis arbeta med en klassisk version av Scrum,
såsom beskrivet i Avsnitt 3.2.2, i kombination med ett Kanban-bräde, som beskrivet
i Avsnitt 3.3.2. Till skillnad från en klassisk version av Scrum fokuserade projekt
gruppen inte på att leverera en fungerande produkt i slutet av varje sprint, och hade
därmed inte regelbundna demonstrationer för kunden. Arbetsprocessen anpassades
genom kontinuerliga utvärderingar under projektets gång. Syftet med att etablera
en tydlig metodik var att skapa ett strukturerat och effektivt arbetssätt, vilket i sin
tur förväntades bidra till ökat kundvärde.

I slutet av varje sprint hölls ett avslutningsmöte som motsvarade både sprint
retrospektiv och sprint review. Under mötet diskuterade gruppen sprintens resultat,
nästa steg i implementeringen, förbättringsförslag till nästa sprint och problem
som uppstått. Projektmedlemmarna fick även anonymt besvara ett formulär, enligt
beskrivningen i Avsnitt 4.7.2, för att bedöma sprintens genomförande. Gruppen
utgick sedan efter förbättringsförslagen och bestämde vad i arbetsprocessen som
skulle ändras till nästa sprint.

Denna iterativa förbättringsprocess ledde till att en arbetsmetod utvecklades
som var anpassad till projektgruppens behov och arbetssätt. Förbättringarna och
resultatet av denna arbetsmetod beskrivs i Avsnitt 5.3.1.

4.6 Kvalitetsmätningar
För att uppfylla de kvalitetskrav som fastställts i projektets kravspecifikation ge
nomfördes kontinuerliga mätningar av prestanda, användbarhet och tillförlitlighet.
Syftet med mätningarna var att säkerställa att produkten skapar värde för kunden.

För att mäta prestanda och säkerställa att LCP [1] inte överskred 2,5 sekunder
i minst 95% av testfallen användes verktyget lighthouse-ci [26]. En pipeline sattes
upp i Azure DevOps som automatiskt genererade en sammanställning över alla
Web Vitals-värden [27], inklusive LCP. Under mätningarna användes en konsekvent
bandbredd genom att emulera 4G-nätverk, för att minska varians.

Användbarhetstester, enligt metoden som beskrivits i Avsnitt 3.2.3, genom
fördes vid två tillfällen under produktens utvecklingsfas. Det första testtillfället
ägde rum under den andra sprinten och då deltog samtliga 9 projektmedlemmar.
De utförde totalt 8 definierade uppgifter i systemet, med syftet att identifiera
tidiga brister i användarupplevelsen. Det andra testtillfället skedde under den femte
sprinten och då deltog 13 externa personer. Varje medlem i projektgruppen hade
ansvaret för att hålla i användartester för en till två personer. Vid detta tillfälle fick
deltagarna utföra fyra fördefinierade uppgifter, utformade för att täcka största delen
av produktens funktionalitet. Syftet var att säkerställa att produkten uppfyllde
kvalitetskravet om ett genomsnittligt betyg på minst 68 poäng i en SUS-mätning.

14

Efteråt fyllde de i ett SUS-formulär med tio påståenden om deras användarupple
velse och betygsatte hur väl varje påstående stämde på en skala från ett till fem.

Utöver SUS-formuläret fick testdeltagarna även möjligheten att ge generell
feedback och förbättringsförslag på produkten. Den insamlade feedbacken diskute
rades sedan på ett av projektgruppens möten och relevanta åtgärder vidtogs med
syftet att förbättra systemets användbarhet.

För att säkerställa systemets tillförlitlighet skapades automatiserade tester
med målet att täcka 95% procent av backend-koden genom statement coverage.
Statement coverage innebär att varje rad i koden testas minst en gång. Det var även
önskvärt att öka testningens branch coverage, som innebär att testerna täcker alla
möjliga logiska grenarna i koden.

4.7 Erfarenhetsinsamling
I genomförandet av kandidatprojektet samlades erfarenheter in av gruppen och
medlemmarna. Erfarenheterna handlade om projektarbetet, den centrala arbets
processen Scrum och tekniska lärdomar.

4.7.1 Utvärdering av process

Under tidens gång anpassades den huvudsakliga arbetsmetoden Scrum, och även
mindre processer, utefter utvärderingar som genomfördes under sprint retrospektiv.
Under mötet diskuterades och dokumenterades både positiva och negativa erfaren
heter från sprinten. Följande frågor användes som utgångspunkt för diskussionen:
• Vad gick bra respektive dåligt under sprinten?
• Vilka problem uppstod och hur löstes dessa?
• Vad kan förbättras eller göras annorlunda inför nästa sprint?
Insikterna från utvärderingen dokumenterades och sammanställdes av kvalitetssam
ordnaren och användes sedan som underlag vid planeringen av nästa sprint.

4.7.2 Utvärderingsformulär

I slutet av varje sprint fick samtliga projektmedlemmar anonymt besvara ett
formulär för att bedöma sprintens genomförande. Formuläret bestod av skalfrågor
där en etta representerar missnöje och en femma nöjdhet.

Insamlad data analyserades för att identifiera förbättringsområden. Formuläret
bestod av följande frågor:
1. Var sprintmålen tydliga och realistiska?
2. Hade teamet en god kommunikation och samarbete under sprinten?
3. Kunde de planerade uppgifterna levereras i tid och med god kvalitet?
4. Sprint retrospektiv hjälpte oss att identifiera förbättringsområden och utvecklas

som team.
5. Arbetsbelastningen under sprinten var rimlig och hållbar.
6. Jag är överlag nöjd med hur denna sprint genomfördes.

4.7.3 Processdokumentation

För att dokumentera erfarenheter under projektets gång, fördes ett protokoll under
varje möte, med undantag för dagligt Scrum-möte. Protokollet var särskilt viktigt
under möten som rörde uppstart av sprint och utvärdering av sprint. Det var bety

15

delsefullt för att kunna reflektera över det utförda arbetet och följa de förändringar
som genomfördes i Scrum-processen. Kvalitetssamordnaren antecknade förändring
arna till efterkommande sprint och sammanställde antal avklarade sprintuppgifter.

4.8 Systemanatomi
Under projektets planeringsfas skapades en systemanatomi med syfte att ge en
översikt över systemet TIDIG:s funktioner och egenskaper. Projektgruppen delade
upp sig i tre arbetsgrupper som designade varsin systemanatomi. Vid skapandet av
systemanatomin utgick varje arbetsgrupp från systemets användarfunktioner. För
att identifiera användarfunktionerna användes kraven som definierats i kravspecifi
kationen.

Vid skapandet av varje anatom för systemanatomin identifierades de underlig
gande funktioner och komponenter som krävdes för anatomen i fråga [21]. Därmed
identifierades alla beroenden mellan funktioner och komponenter. Dessa kopplades
sedan ihop med pilar baserat på vilka funktioner och komponenter som interagerar
med varandra. Slutligen strukturerades anatomerna upp i följande abstraktions
lager:

1. Användarfunktioner
2. Användargränssnitt
3. Serverfunktioner
4. Databassystem
5. Hårdvara

Efter att de tre grupperna skapat ett utkast vardera för systemanatomin
sammanställdes dessa till en slutlig systemanatomi. Systemanatomin justerades
utifrån återkoppling från handledare och examinator i kursen.

Tanken var att under projektets gång kontinuerligt följa upp och uppdatera
systemanatomin för att säkerställa en gemensam förståelse av systemets struktur
och beroenden. I Avsnitt 5.6 redogörs det faktiska utfallet.

16

4.8.1 Utvärdering av systemanatomin

Under slutfasen av projektet gjordes en utvärdering för att få en bild över hur
gruppen upplevde att systemanatomin hjälpte utvecklingen och om det upplevdes
att systemanatomin användes som den skulle. En enkät skickades ut till varje
deltagare som värderade olika påståenden på skalan 1-5. 1 motsvarar att påståendet
inte stämde och 5 motsvarar att påståendet stämde bra. Enkäten bestod av följande
påståenden:

1. Systemanatomin hjälpte mig att få en överblick över hela systemet.
2. Jag förstod bättre hur olika delar av systemet hängde ihop tack vare systema

natomin.
3. Systemanatomin underlättade vårt arbete med att planera utvecklingen.
4. Jag använde systemanatomin regelbundet under projektets gång.
5. Jag tror att systemanatomin hade fungerat bättre om vi la mer tid på att

uppdatera den.
6. Jag skulle rekommendera att använda systemanatomi i liknande projekt.
7. Jag upplevde att systemanatomin bidrog till ett bättre slutresultat.

Resultatet för enkäten redovisas i Avsnitt 5.7.

17

5 Resultat

Detta kapitel beskriver det system och de processer som har utvecklats för att
besvara frågeställningarna i Avsnitt 1.3, med stöd av de metoder som beskrivs i
Kapitel 4. Här presenteras även projektgruppens gemensamma erfarenheter från
arbetet.

5.1 Värde för kunden
Genom att uppfylla alla krav i kravspecifikationen kunde värde för kunden säker
ställas. Utöver detta anpassades även applikationen efter användning på mindre
skärmstorlekar såsom mobila enheter.

För att minska risken för missförstånd har kontinuerlig kontakt med kunden
upprätthållits under projektets gång. Vid oklarheter eller frågor har projektets
analysansvarige och konfigurationsansvarige kontaktat kunden via mejl, och vid
behov deltagit på kundmöten.

För att få en djupare förståelse för kundens behov genomfördes en undersökning
där ett formulär skickades ut till de anställda på DIGIT. Formuläret innehöll frågor
om hur det nuvarande tidsrapporteringssystem används, dess för- och nackdelar
samt förbättringsförslag. Resultatet gav en djupare förståelse av användarnas behov
och önskemål. Detta togs i beaktande vid utformandet av TIDIG för att skapa
värde för kunden.

5.2 Kvalitetsmätningar
Resultatet av de mätningar som utfördes på webbapplikationens LCP [1] visas i
Tabell 3. Resultatet baseras på innehållet i main-branchen och ändpunkten /tasks,
som visar uppgifter som användaren är tilldelad. Alla mätningar, med undantag för
den som genomfördes den första maj, resulterade i tider under den övre gränsen
på 2.5 sekunder enligt produktens kvalitetskrav. Direkta mätningar i en webbläsare
visade istället ett genomsnittligt LCP-värde på 0.3 sekunder, vilket tyder på att
den automatiska mätningen ger missvisande resultat.

Tabell 3: Resultatet av LCP-mätningar i sekunder

Datum 15/4 16/4 17/4 18/4 20/4 21/4 22/4 23/4 24/4 1/5

LCP 2.2 2.2 2.2 2.2 2.3 2.3 2.3 2.3 2.1 2.9

18

Resultatet från SUS-mätningarna presenteras i Tabell 4, medan de påståenden
som användes i mätningarna beskrivs i Avsnitt 4.6. Användartesterna som utfördes
under den andra sprinten utfördes internt inom projektgruppen medan testerna
under den femte sprinten utfördes av externa personer. Båda mätningarna resul
terade i SUS-poäng som överskred den nedre gränsen på 68 poäng, i enlighet
med produktens kvalitetskrav. Återkopplingen från testpersonerna i samband med
testerna som genomfördes under den femte sprinten beskrev systemet som visuellt
tillfredsställande, lättförståeligt och familjärt då det följde LiU:s gränssnitt. Det
fanns även förbättringsrekommendationer som innefattade kommentarer på vissa
ord som var svåra att tyda och generella fel i designen. Under testningen upptäcktes
även buggar i systemet som därmed kunde åtgärdas av gruppen.

Tabell 4: Resultat från SUS tester

Medelvärde på SUS-frågaSprint Totalt

1 2 3 4 5 6 7 8 9 10

2 4.17 2.0 4.0 1.5 4.3 2.3 4.8 1.7 4.7 1.8 81.7

5 3.92 1.92 3.92 1.46 4.15 2.08 4.46 1.62 4.08 1.77 79.23

För backend-koden skapades automatiserade tester i syfte att uppfylla kvalitetskra
vet om 95 % testtäckning. I slutet av projektet uppnåddes 77% statement coverage
och 75% branch coverage.

5.3 Processbeskrivning
Avsnittet beskriver hur projektgruppen har arbetat med Scrum kombinerat med
Kanban-bräde samt hur arbetssättet har utvecklats under projektets gång.

5.3.1 Process i fokus

Projektgruppen arbetade i sprintar på en till tre veckor. I början av varje
sprint tilldelades samtliga medlemmar någon av följande roller: Scrum master,
produktägare eller medlem i utvecklingsteamet. Scrum mastern ansvarade för att
leda möten, produktägaren hanterade sprintbackloggen och samtliga medlemmar i
teamet var ansvariga för att genomföra uppgifterna. Teamledaren hade permanent
rollen som Scrum master eftersom båda roller har liknande ansvarsområden. Initialt
var kvalitetssamordnaren produktägare men ansvaret fördelades sedan mellan tre
projektmedlemmar: frontendutvecklingsledaren, backendutvecklingsledaren och den
dokumentansvarige.

En produktbacklogg upprättades, baserad på de milstolpar och aktiviteter som
definierats i projektplanen. Inför varje sprint skapades även en sprintbacklogg som
visualiserades med hjälp utav ett Kanban-bräde i Azure DevOps. Mötesprotokoll
för sprintplanerings- samt retrospektiv-mötena skapades även för att säkerställa att
alla relevanta ämnen behandlades.

Inför varje planeringsmöte fick produktägarna i uppgift att förbereda ett förslag
på sprintbacklogg. Inledningsvis gick projektgruppen igenom samtliga sprintupp
gifter i helgrupp, tilldelade ansvar och prioriterade dessa på en skala från ett till
fyra, där fyra motsvarade högst prioritet. Processen utvecklades därefter baserat på

19

utvärderingar för att bland annat effektivisera planeringsmötena. Mötet inleddes
därefter med att gruppen gemensamt gick igenom de sprintuppgifter som berör
samtliga projektmedlemmar, såsom exempelvis dokumentation. Därefter delades
gruppen upp i frontend och backend. Varje utvecklingsledare gick då igenom
relevanta sprintuppgifter inom sitt arbetsområde. Slutligen samlades hela gruppen
igen för gemensam återkoppling, tekniska diskussioner och bedömning av sprintens
rimlighet.

De dagliga Scrum-möten hölls initialt på distans via Discord klockan 12:30,
men detta ändrades sedan till klockan 11:03 för att passa projektmedlemmarnas
schema. Till en början hade projektgruppen separata mötesprotokoll för Scrum-
relaterade möten respektive vanliga gruppmöten. Dessa mötespunkter integrerades
sedan till ett kombinerat mötesprotokoll för att samla all dokumentation på samma
ställe.

Uppgifterna organiserades i olika kategorier på Kanban-brädet som baserades
på sprintens övergripande mål. Dessa kategorier var generellt dokumentskrivning
samt frontend- och backendutveckling. Under den sista sprinten av produktens
utvecklingsfas gick utvecklingsledarna igenom kravlistan och milstolparna i projekt
planen. Sprintuppgifterna skapades utifrån det som återstod att implementera och
organiserades i kategorier beroende på vilket krav de relaterade till.

För att visualisera uppgifternas prioritet färgkodades uppgifterna, där varje
färg representerade en viss prioriteringsnivå. De flesta uppgifter tilldelades en
ansvarig person under sprintplaneringsmötet, men under de tre första sprintarna
lämnades vissa uppgifter utan en utsedd ansvarig. Projektmedlemmar som senare
under sprinten hade tid att utföra uppgiften kunde därmed skriva upp sig som
ansvariga.

Projektgruppen strävade efter att inte skapa nya sprintuppgifter efter sprint
planeringsmötet avslutats. Om det ändå ansågs nödvändigt att lägga till nya
uppgifter, markerades detta tydligt i uppgiftens titel att det var en nyligen tillagd
uppgift. Sprintuppgifter som inte hann färdigställas under en sprint flyttades över
till nästkommande sprintbacklogg. Ett undantag var den femte sprinten som varade
i tre veckor och innehöll ett möte i mitten av sprinten då det var tillåtet att skapa
nya sprintuppgifter.

5.3.2 Utvärdering av process

Resultatet från de första fyra sprinterna presenteras i Tabell 5 vars frågor beskrivs
i Avsnitt 4.7.2. Fråga 4 besvarades inte efter den första sprinten eftersom sprint
retrospektiv inte hade genomförts då.

Tabell 5: Medelresultat på reflektionsformulär

Sprint Fråga 1 Fråga 2 Fråga 3 Fråga 4 Fråga 5 Fråga 6

1 3.44 2.56 2.56 - 3.67 3.00

2 4.11 3.78 3.67 4.00 3.89 4.22

3 3.22 3.56 3.11 3.56 3.78 3.67

20

4 4.22 3.00 3.67 3.67 4.33 3.78

5 4.00 3.67 3.44 3.78 3.00 3.89

I slutet av varje sprint, under mötet för sprint retrospektiv, sammanställdes upp
gifternas status på Kanban-brädet för att ge en översikt över sprintens resultat.
Resultatet presenteras i Figur 1 och visar att antalet uppgifter i sprintarna ökade
över tid.

Figur 1: Sprintuppgifternas placering i Kanban-brädet i slutet av varje sprint.

21

5.4 SusAF
Resultatet av SusAF-analysen är både det Sustainability Awareness Diagram
(SusAD) som syns i Figur 2. Gruppen valde att markera positiva effekter med grön
färg och ett plus (+) medan negativa effekter markerats gula och ett minus (-).

SusAD synliggör risker och möjligheter som gruppen identifierade med produk
ten och deras beroenden. Potentiella möjligheter och positiva aspekter med systemet
skulle, enligt SusAF-analysen, kunna vara att medarbetare sparar värdefull tid med
ett smidigt rapporteringssystem vilket i sin tur hade kunnat bidra till ett mindre
stressigt arbetsklimat. En potentiell risk hade däremot kunnat vara att vissa har
svårare att sätta sig in i nya system och att systemet därför hade kunnat innebära
en stressfaktor för dem.

👍

T
ek

n
is
k

Ekonomisk

M
iljö

IndividuellSo
cia

l

Omedelbar

System
isk

Möjliggö
rande

TIDIG

Svinn och

föroreningar:

Används mindre
papper

Säkerhet:
krypterad databas
gör det säkrare

Hälsa:
Mindre stressig

arbetsplats

Tillit: Bra interna
system ger

anställda större
tillförlitlighet till

företaget

Säkerhet:

Säkrare att ha ett digitalt
system än att hantera en
massa papper om ens

arbetstid.

Självkännedom

och fri vilja:

Användare kan
gå till sin chef om
de är oroliga över

systemet.

Värde:

företaget blir
mer effektivt

och tjänar mer
pengar

Värde: systemet ger
företaget bättre kontroll
över var timmarna läggs

Leverantörskedja:

redovisa korrekt
antal timmar så
varje part får rätt

ekonomisk
ersättning

Hälsa: blir
mer att göra

för
medarbetarna

Value: medarbetare
sparar värdefull tid på

ett smidigt
rapporteringssystem

Samhörighet:

Mindre tid på
tidsrapportering
ger med tid för
att umgås med
arbetskamrater

Inklusivitet och

diversitet:

Vissa individer
har svårare att
sätta sig in i nya

system

Skalbarhet: Systemet är
skalat ca 200 användare. Vid
fler användare kan systemet

bli svårare att skala upp.

Livslångt

lärande:

Lär sig ett
nytt system.

-

-

-

+

+

+

+

+

+

+

+

+

+
+

+

Energi:

Kan dra mycket el
-

Figur 2: SusAD över produkten

22

5.5 Gemensamma erfarenheter
De gemensamma erfarenheterna inkluderar de processrelaterade och tekniska erfa
renheter som erhållits av projektgruppen under projektets gång. Scrum i relation
till sprintuppgifter behandlas här och för mer ingående information hänvisas läsaren
till Avsnitt 5.3.

5.5.1 Processrelaterade erfarenheter

Under projektets genomförande har flera processrelaterade erfarenheter förvärvats.
Dessa har uppkommit genom interna utbildningar, genomförandet av Scrum och
lärdomar från projektgruppens kommunikation.

5.5.1.1 Projektets faser och planering

Arbetet med olika projektfaser, som beskrivs i Avsnitt 4.1, har resulterat i flera
erfarenheter kring planering. Den första fasen, analysfasen, inkluderade arbete med
kravspecifikationen, men på grund av kursens tidiga inlämningsdatum för resteran
de dokument påbörjades även projektplanen och kvalitetsplanen under analysfasen.
Detta resulterade i att analysfasen och planeringsfasen kombinerades till en fas
där kraven samlades in parallellt med framställandet av projektplan och resterande
dokument. Den ursprungliga tidplanen utgick från projektplanens milstolpar som
placerades ut i projektets faser och innehöll en veckas tidsbuffert i slutet av projektet
för eventuella förseningar.

När halva projekttiden passerat, och projektet befann sig i realiseringsfasen,
behövde tidplanen justeras drastiskt eftersom flera milstolpar hade försenats. Det
berodde på att det fortfarande saknades en komplett design av webbsida och
implementationen med LiU-SSO hade försenats. Denna försening resulterade i att
den planerade tidsbufferten tog slut. Detta ledde till en större omorganisering av
projektets tidplan då milstolpar tog längre än väntat att uppnå och den gamla
tidplanen var för optimistisk. Den nya tidplanen lade ett mindre fokus på projektets
faser och etablerade istället nya perioder för produktutveckling och dokumentarbete
i enlighet med Scrums iterativa sprintar. De sprintuppgifter som togs fram efter
omplaneringen utgick från milstolparna och kraven från kravspecifikationen, till
skillnad från tidigare. Vidare bestämdes ett datum för feature freeze då sprintupp
gifterna skulle vara klara och då fokuset skulle läggas på testning och buggfixar.
Slutligen färdigställdes systemet i tid för överlämning till kund.

5.5.1.2 Delning av kompetens

I projektet genomfördes interna utbildningar i form av workshoppar inom konfigu
ration, backend- och frontendutveckling, enligt Avsnitt 4.3. Utbildningarna inom
konfiguration och backendutveckling kombinerades till ett längre tillfälle, där både
teoretiska och praktiska moment ingick. Utbildningens omfattning var bred och
krävde vissa förberedelser under själva workshoppen, vilket resulterade i att en
betydande del av tiden ägnades åt installationer och felsökning snarare än prak
tiskt lärande. En insikt från workshoppen var att tydliga instruktioner och en
avgränsad uppgiftsomfattning underlättade inlärning. Dessa insikter tillämpades i
den nästkommande workshoppen inom frontendutveckling, där deltagarna följde en
handledning i ramverket Svelte och därefter övade självständigt.

23

5.5.1.3 Scrum: Formulering av uppgifter

I Avsnitt 5.3.1 står det att under varje sprintplaneringsmöte presenterades förslag
på sprintuppgifter i Kanban-brädet. Ett återkommande ämne under sprint retro
spektiv var att uppgifterna ofta upplevdes som alltför generellt formulerade och
behövde brytas ner i mindre specifika deluppgifter. Exempelvis var uppgifter i första
sprinten formulerade: ”Design tidsrapportering dator” eller ”Skriv kravspecifika
tionen”. Otydliga uppgifter orsakade förvirring över när dessa skulle definieras som
klara i Kanban-brädet. Därmed diskuterade gruppen under flera sprint retrospektiv
hur uppgifter kunde specificeras bättre till sprinten därpå. I början på den femte
sprinten bestämdes att gruppen behövde göra en omplanering. Detta resulterade
i ett nytt Kanban-bräde presenterades i mitten av sprinten där varje deluppgift
kunde kopplas till milstolpar och krav från kravspecifikationen. Slutdatumet på
sprinten fick också större betydelse då slutdatumet på sprinten skulle vara dagen
efter projektets feature freeze. Denna gång gick inte frontend-gruppen och backend-
gruppen separat igenom uppgifterna, utan hela gruppen satt tillsammans när
uppgifterna presenterades och delegerades. Detta gjorde att projektmedlemmarna
hade möjlighet att ställa frågor på uppgifter de upplevde som otydligt formulerade
och därmed kunde formuleringarna korrigeras.

5.5.1.4 Kommunikation

Under projektarbetet uppstod det kommunikationsbrister när utvecklingsarbetet
skedde på distans och i separata arbetsgrupper. Det ledde till missförstånd
och dubbelarbete. Som åtgärd etablerades gemensamma rutiner vilket inkluderar
Kanban-verktyg, dagliga Scrum-möten och en ny Discord-kanal för att informera
gruppen med statusuppdateringar. Ytterligare ett problem med bristande kommu
nikation handlar om kundkontakten. Under vissa perioder av projektarbetet har
det varit svårt att få kontakt med kunden, vilket har resulterat i förseningar av
funktionalitet. Den bristande kommunikationen med kunden påverkade tillgången
till resurser gällande deras inloggningssystem som användes för att logga in i TIDIG.
Detta löstes genom att kunden erbjöd oss kontaktuppgifter till en systemutvecklare
hos dem, vilket gjorde att kommunikation om de tekniska detaljerna skedde direkt
med en systemutvecklare och underlättade därmed utvecklingsprocessen.

5.5.2 Tekniska erfarenheter

Inför projektet hade projektmedlemmarna varierande tekniska erfarenheter, men
det fanns alltid någon med grundläggande kunskap om programmeringsspråket eller
ramverket som skulle användas. En bra erfarenhet av detta var hur värdefullt det
var när personer med erfarenhet tog initiativ och planerade gemensamma works
hoppar, skickade ut studiematerial och svarade utförligt på frågor från gruppen.
Detta bidrog till att hela projektgruppen fick en gemensam förståelse av projektets
tekniska grund.

Inför projektet hade ingen i projektgruppen erfarenhet av Azure DevOps.
Genom projektet har gruppen fått praktiska erfarenheter att använda verktyget,
både för att hantera processen via Kanban-bräden, men även för testning och
arbetsflöden. Medlemmar i gruppen hade tidigare erfarenhet att implementera

24

databas genom att skriva SQL-kod. Men under detta projekt användes ASP.NET
med C#. Detta ledde till att gruppen behövde lära sig ett nytt programmerings
språk. De kunde dock använda tidigare teori inom objektorienterad programmering
och databaser för att underlätta inlärning och implementation.

5.5.2.1 Databasdesign och modellering

Utvecklingen av TIDIG har gett projektgruppen teknisk erfarenhet av databasde
sign och modellering av data genom Entity Framework. Arbetet gick ut på att
identifiera de datatyper som gruppen kallar för hårda datatyper. Dessa har direkta
motsvarigheter som databastabeller. Ett exempel på detta i systemet är Task och
User. Systemets hårda datatyper och deras relation med varandra modellerades med
hjälp av EER-diagram och relationsdiagram. En viktig sak som gruppen insåg under
projektet var att denna modellering inte täckte allt och att data hanterades olika i
frontend och backend. Detta resulterade i att tunna datatyper utvecklades. Exempel
på dessa är TaskView och UserView. Tunna datatyper innehåller den data från databasen
som är relevant för frontend. Dessa datatyper tillät alltså systemets backend att
skicka mindre data till frontend-servern. Exempelvis var detta bra då användarvyn
inte behövde visa all data som backend hade om Task-objekten och därför kunde
TaskView användas istället.

På grund av bristande kommunikation mellan arbetsgrupperna utvecklades
sedan vissa stora datatyper som skulle skickas till frontend-servern och detta bröt
mot den ursprungliga designen och strukturen. En viktig sak att nämna är även att
arbetsgrupperna för backend och frontend undvek att prata ihop sig om ändpunkter
och data som frontend-servern förväntade sig från backend-servern. Det skedde ett
möte då detta togs upp men bara vissa ändpunkter hann behandlas.

5.6 Systemanatomi
Figur 3 visar den systemanatomi som projektgruppen skapade. Den skiljer sig från
planerna beskrivet i Avsnitt 4.8. Det var exempelvis inte relevant att skapa ett lager
för hårdvara, eftersom systemet endast är en mjukvarutjänst.

Systemanatomin visade sig vara som mest hjälpsam under projektets plane
rings- och etableringsfas. Den var till hjälp både för att skapa övergripande
blockdiagram över systemet, se Figur 9, och vid utformningen av webbsida, då det
fastställdes vilka vyer som skulle implementeras.

Systemanatomin hade även viss användbarhet vid planering av testning. Den
har hjälpt till att identifiera vilka delar av systemet och vilka funktioner som
ska testas, speciellt vilka integrationer som är viktiga. Under realiseringsfasen har
systemanatomin inte aktivt använts då den varken granskats eller uppdaterats.

25

Figur 3: Systemanatomi

5.7 Utvärdering av systemanatomins betydelse
Tabell 6 innehåller resultatet på enkäten med frågorna samt dess medelvärde och
standardavvikelser. Värderingen gjordes på skalan 1-5, där 1 motsvarade att påstå
endet inte stämde så bra och 5 motsvarade att påståendet stämde bra. Medelvärdet
låg mellan 1 och 2.7, vilket kan tolkas som ett lågt resultat. Standardavvikelsen
ligger som högst på 1.4, vilket betyder att svaren har medel till låg variation.

Tabell 6: Gruppens svar på frågor kring systemanatomins användning.

Fråga Medelvärde (1-5) Standardavvikelse

Systemanatomin hjälpte mig att få
en överblick över hela systemet

2.7 1.2

Jag förstod bättre hur olika delar
av systemet hängde ihop tack vare
systemanatomin.

2.3 1.4

26

Fråga Medelvärde (1-5) Standardavvikelse

Systemanatomin underlättade vårt
arbete med att planera utveckling
en.

1.9 1.4

Jag använde systemanatomin regel
bundet under projektets gång.

1 0

Jag tror att systemanatomin hade
fungerat bättre om vi la mer tid på
att uppdatera den.

2.4 1

Jag skulle rekommendera att använ
da systemanatomi i liknande pro
jekt.

1.7 0.7

Jag upplevde att systemanatomin
bidrog till ett bättre slutresultat.

1.8 1

5.8 Systembeskrivning
TIDIG består av en backend-server som hanterar logik och interaktion med databas,
samt en frontend-server som hanterar användarinteraktioner. Detta avsnitt utfors
kar systemets struktur och funktioner.

5.8.1 Frontend

Frontend utvecklades i Svelte med TypeScript och använde Tailwind CSS för att ge
komponenter styling, samt externa bibliotek som tillhandahöll färdiga CSS kompo
nenter. All data hämtas från backend-servern via API-anrop.

När en användare öppnar webbapplikationen omdirigeras denne automatiskt
till inloggning via LiU-SSO, där även användarens behörighet hämtas. Systemet
TIDIG stödjer två roller: administratörer och tidredovisare. Administratörer är
tidredovisare med utökade behörigheter, vilket innebär att deras version av systemet
inkluderar extra funktionalitet.

Användare kan navigera mellan vyerna för tidsredovisning, uppgifter, rappor
ter, statistik och profiler. Vyerna finns tillgängliga via ett navigeringsfält på stora
skärmar eller via en rullgardinsmeny på mindre skärmar. Vyerna har även ett
anpassat utseende baserat på skärmstorlek och dessa behåller även samtliga funk
tionaliteter.

5.8.1.1 Tidredovisning

Tidredovisningsvyn är startsidan för TIDIG. Där kan användare redovisa sin
arbetade tid på de uppgifter användaren har tillgång till. Figur 4 visar tidredovis
ningsvyn för stora skärmar.

27

Figur 4: Tidredovisningsvyn i TIDIG

5.8.1.2 Uppgifter

Uppgiftsvyn, se Figur 5, ger användare möjlighet att se, gå med i, samt lämna
samtliga uppgifter. I denna vy kan administratörer även skapa, redigera och arkivera
uppgifter. Filtreringsalternativen är till för att filtrera vilka uppgifter som syns i
uppgiftslistan.

28

Figur 5: Uppgiftsvyn i TIDIG

5.8.1.3 Rapporter

I rapportvyn, se Figur 6, kan användare få en översikt av sin redovisade tid. Dessa
rapporter ger en överblick på månadsbas med möjlighet att se över historik från
tidigare år. Administratörer kan även ta fram rapporter för enskilda projekt där
enskilda tidredovisares tider kan tas fram. Administratörer kan även exportera
rapporter i .csv-format för att hanteras externt.

Figur 6: Rapportvyn i TIDIG

5.8.1.4 Statistik

Statistikvyn, se Figur 7, visualiserar användarnas arbetstid för samtliga och enskilda
uppgifter i form av ett stapeldiagram. Vyn innehåller även information om förväntad
arbetstid, arbetad tid och flextid.

29

Figur 7: Statistikvyn i TIDIG

5.8.1.5 Profil

I profilvyn, se Figur 8, finns information om de olika användarna samt deras aktiva
uppgifter och rapporter. Profilsidan agerar även som inställningsmeny där använ
dare kan ändra sin sysselsättningsgrad och sitt startdatum. Startdatumet används
för beräkning av statistiken i statistikvyn.

30

Figur 8: Profilvyn i TIDIG

5.8.2 Backend

Backend-servern har som uppgift att utföra all logik och datainsamling. Den ansva
rar för att verifiera användarnas åtkomst genom LiU-SSO, hålla reda på användares
sessioner och hämta samt spara data genom databasen. Allt detta görs tillgängligt
genom ett webb-API utvecklad i ASP.NET. Denna kan frontend-servern använda för
att få tillgång till den data som backend-servern hanterar. Varje ändpunkt och dess
förväntade in- och utdata kan hittas i backend-serverns API-dokumentation som
automatiskt genereras med verktyget NSwag. För att hantera databasen används
verktyget Entity Framework Core, som gör det möjligt att generera databastabeller
utifrån C#-klasser. Verktyget gör det möjligt att skapa kopior av databasen
eftersom strukturen definieras på ett ställe i koden. Detta har varit användbart då
varje projektmedlem kunde ha en lokal databas under utvecklingen av TIDIG.

5.8.3 Uppdelningen av frontend- och backend-server

På det sättet som systemet byggdes är backend-serverns ändpunkter bara tillgäng
liga genom frontend-servern. Det går alltså inte att skicka förfrågningar direkt till
backend över internet. Denna struktur visas i Figur 9. Fördelen med detta är att
kontrollen för vilka förfrågningar som kan skickas stannar hos frontend. En nackdel
med uppdelningen är att vissa ändpunkter behöver skapas två gånger. En gång på
frontend-servern och en gång på backend-servern. Anledningen till detta är att vissa
ändpunkter behöver kunna användas även efter att sidan laddats.

Att systemet är uppdelat i frontend- och backend-server har resulterat i att
produkten fullföljer kravet om att backend är i ASP.NET med C# samtidigt som
frontend-utveckling är i Svelte.

31

Figur 9: Blockschema över systemet TIDIG

5.8.4 Uppdelning i separata arbetsgrupper för frontend och backend

Att dela upp webbapplikationen i två distinkta servrar: frontend och backend,
gjorde att två arbetsgrupper naturligt kunde jobba parallellt på funktionalitet. Den
tydliga uppdelningen förde dock med sig en del problem.

En svårighet med att ha distinkta arbetsgrupper var att arbetet som den
ena gruppen utförde ofta berodde på att den andra gruppens arbete fungerade.
Från frontends sida krävdes exempelvis backend-ändpunkter för att kunna testa
att koden fungerade. Från backends sida var det samtidigt svårt att utveckla
ändpunkter när frontend inte på förhand visste exakt vilka de skulle behöva och hur
de skulle fungera. Att backend-gruppen inte kunde utveckla ändpunkterna i förväg
gjorde vid många tillfällen att ny frontend-kod inte kunde testas förrän flera dagar
eller ibland över en vecka senare. Även när en ny ändpunkt förfrågades hände det
ofta att dess funktionalitet att den ändrades under projektets gång. Stora delar av
koden som skrevs i backend behövde därför skrivas om flera gånger vilket resulterade
i arbete som kunde ha undvikits.

32

6 Diskussion

Detta kapitel problematiserar och analyserar resultat kring värdeskapande för
kunden, erfarenhetshantering, systemanatomi och uppdelning i arbetsgrupper. Den
belyser även källkritik och de samhälleliga och etiska aspekter med produkten som
har skapats.

6.1 Resultat
Gruppens erfarenheter från projektet och Scrum kan tolkas ur flera perspektiv.
De tekniska beslutens påverkan på projektet och alternativa implementationssätt
diskuteras.

6.1.1 Mätningar på process

Resultatet från projektgruppens utvärdering av sprintarnas genomförande presen
terades tidigare i Tabell 5. Sammanställningen av svaren visar inga stora variationer
mellan sprintarna, utan samtliga påståenden har generellt fått relativt höga medel
värden. Eftersom samtliga värden ligger över mittpunkten på skalan (2.5 av 5), kan
resultatet tolkas som övervägande positivt. Formuläret har främst varit värdefullt
som underlag inför sprint retrospektiv, då det hjälpt projektgruppen att identifiera
förbättringsområden. Ett konkret exempel är under den fjärde sprinten, där ett
lägre resultat på frågan om kommunikation uppmärksammades. Detta låg till grund
för en diskussion inom gruppen, vilket i sin tur möjliggjorde att orsaker identifie
rades och åtgärder kunde vidtas inför kommande sprint. Formuläret har därmed
bidragit till att utveckla en effektiv arbetsprocess, vilket i sin tur har möjliggjort
för projektgruppen att leverera värde till kunden.

Uppgifters placering på Kanban-brädet visualiseras i Figur 1. Med tanke på
att målet är att färdigställa samtliga uppgifter under en sprint har projektgruppen
presterat relativt dåligt i den aspekten. Detta resultat stämmer överens med pro
jektgruppens uppfattning att det är mycket svårt att skapa tydliga uppgifter inför
sprinten som förblir relevanta och innebär en rimlig arbetsbelastning. Det bästa
resultatet uppnåddes under sprint fem, då 86% av uppgifterna slutfördes. Denna
förbättring kan sannolikt förklaras av att sprinten var längre, vilket gav mer tid
för genomförande av uppgifter, samt att uppgifterna var tydligt definierade då de
kopplades till specifika krav. Detta understryker vikten av att kontinuerligt anpassa
arbetssättet, vilket ökar projektgruppens effektivitet och möjliggör leverans av en
bättre produkt som skapar ett högre värde för kunden.

33

6.1.2 Kvalitetstester

Vid både de interna och de externa användbarhetstesterna fick produkten en SUS-
poäng som tydligt överskred den gräns som angavs i produktens kvalitetskrav, vilket
även speglades i återkopplingen från testpersonerna. Ett genomsnittligt SUS-resul
tat på 68 poäng indikerar att produkten är godkänd ur ett användbarhetsperspektiv
[19]. Det positiva resultatet på de interna testerna innebar att implementeringsfasen
kunde påbörjas utan att några omfattande ändringar i designen krävdes. Eftersom
den nästan färdigutvecklade versionen av produkten TIDIG uppnådde ett SUS-
resultat på cirka 79 poäng och återkopplingen från testerna var lätta att åtgärda,
kunde projektgruppen i slutfasen fokusera på andra aspekter än användbarheten.
Användbarhetstesterna resulterade i att buggar upptäcktes och gränssnittet för
bättrades för att öka användarvänligheten. Detta var särskilt värdefullt för kunden
eftersom de betonat vikten av ett användarvänligt system.

Även prestandamätningarna visade konsekvent goda resultat, där LCP-värdena
låg under den tröskel som sattes i kvalitetskraven. Detta är sannolikt ett resultat
av att projektgruppen tidigt tog hänsyn till prestanda såsom att exempelvis
utföra tyngre beräkningar i systemets backend. Ett undantag var dock den senaste
mätningen, där orsaken till avvikelsen inte har kunnat fastställas. Det kan vara
relaterat till den stora skillnaden mellan testar utförda automatiskt eller manuellt
i webbläsare. Ingen orsak till skillnaden har identifierats.

6.1.3 Programmeringsspråk och ramverk

Ramverket Svelte användes för frontendutvecklingen. En avgörande faktor för valet
var att kunden kommer att ta över systemet efter projektets avslut, vilket ställde
krav på att kodbasen ska var lättförståelig och underhållbar. Svelte bygger på
webbtekniker som HTML, CSS och JavaScript, vilket minskar inlärningströskeln
och gör det enklare för framtida utvecklare att sätta sig in i projektet, även utan
tidigare erfarenhet av ramverket. Dessutom kräver Svelte minimalt med mallkod,
vilket gjorde det möjligt för projektgruppen att snabbt komma igång med utveck
lingen. En ytterligare fördel var att det är enkelt att integrera Svelte med externa
JavaScript-bibliotek, vilket möjliggjorde användningen av tredjepartslösningar. Det
öppnade upp för utnyttjandet av beprövade verktyg med långsiktigt underhåll och
bred användning, vilket accelererade utvecklingen. Ramverket Svelte bidrog därmed
till ett ökat kundvärde, då den lättförståeliga kodbasen gav projektgruppen mer tid
att fokusera på produktutvecklingen.

6.1.4 Processrelaterade erfarenheter

Erfarenheterna som beskrivs i Avsnitt 5.5 tar upp flera aspekter från projektarbetet.
De processrelaterade erfarenheterna behandlar följande områden: Planering, kom
munikation, Scrum och delning av kompetens. I detta avsnitt kommer lärdomarna
från erfarenheterna jämföras med varandra.

6.1.4.1 Planering

Det finns flera lärdomar om planering att nyttja från de erfarenheter som togs upp
i Avsnitt 5.5.1.1. En generell lärdom är att det är svårt att planera relativt långt i
förväg. Därför ska man vara förberedd på att planen kan och troligtvis kommer att

34

ändras. Vidare blir frågan hur man som grupp bör hantera när planeringen fallerar.
Detta hanterades genom att planera om tidplanen och prioritera det viktigaste som
skulle göras. Därefter hölls flera möten för att gå igenom milstolparnas och kravens
status och informera om återstående uppgifter och deras slutdatum.

Den andra gången fungerade den nya planen bättre än den tidigare. Detta kan
delvis berott på att man inte längre behövde planera så långt fram i framtiden, men
det kan även bero på en ny insikt gällande att omplanera: Det räcker inte bara med
att uppdatera interna deadlines, utan man ska också se över vad som är kvar att
göra i projektet, relaterat till projektets krav och milstolpar.

En annan lärdom som man kan tänka på i framtiden är vikten av en tidsbuffert,
speciellt att ha en större tidsbuffert när man saknar erfarenhet av att planera
större projekt. Denna lärdom kommer från erfarenheten då gruppen hade en vecka
i tidsbuffert som visade sig inte vara tillräckligt. Konsekvensen var att slutdatumet
för att färdigställa TIDIG flyttades fram från att ha legat i början på maj, till slutet
av maj. Från detta kan ännu en lärdom dras gällande beroende av tredje part: Om
framsteg i ett projekt baseras på en tredje part behöver gruppen vara förberedd på
förseningar hos denne och därmed behöver tidplanen innehålla en tidsbuffert som
kompenserar detta.

6.1.4.2 Delning av kompetens

De workshoppar som genomfördes i syfte av kompetensdelning var lyckade i vissa
aspekter, och misslyckades i andra. Dels gjorde de att projektmedlemmar snabbt
kom igång med verktygen och kunde få ställa frågor till de som var mer kunniga,
men i andra aspekter var det kunskap om irrelevanta verktyg som lärdes ut. Den
kunskap som lärdes ut under backend-workshopen visade sig vara irrelevant för de
flesta i utvecklingsteamet.

En möjlig anledning till varför, var att workshoppen hölls tidigt i arbetet då
de tekniska verktygen ännu inte hade bestämts. Vidare var en central lärdom från
denna workshop vikten av tydliga instruktioner och en avgränsad uppgiftsomfatt
ning för att underlätta inlärning. Som tidigare nämnts i Avsnitt 5.5.1.2 tillämpades
dessa insikter i workshoppen inom frontendutveckling och resulterade i en ökad
kompetens som sedan underlättade implementationsarbetet av TIDIG. Det kan
även nämnas att den andra workshoppen i Svelte hade fördelen av att redan vara
ett bestämt verktyg. En lärdom är alltså att det är fördelaktigt att avvakta med
utbildning innan tekniska verktyg är etablerade för att på så sätt minska risken för
tidsåtgång åt irrelevanta saker.

Ytterligare ett sätt att dela kompetens inom projektgruppen var genom
kodgranskning via pull requests i Azure DevOps. Enligt Bacchelli [28] har kod
granskning visat sig vara ett bra verktyg för att öka kunskapsdelning inom ett
mjukvaruprojekt. Detta stämmer överens med vad projektgruppen upplevt under
utvecklingen av TIDIG.

6.1.4.3 Kommunikation

Under projektarbetet har det framkommit att god kommunikation i teamet har varit
viktigt för att lyckas med projektarbetet och leverera en bra produkt. Missförstånd

35

och dubbelarbete uppkom som ett resultat av bristande rutiner när det gällde
att informera om vad man jobbar på. Så som redan tagits upp i Avsnitt 5.5.1.4
resulterade distansarbetet och separata arbetsgrupper till minskad kontakt mellan
projektmedlemmarna vilket kan ha bidragit till problemet.

Resultatet på fråga 2 i Tabell 5 visar hur gruppen har upplevt kommunikatio
nen under varje sprint. Kommunikationen har uppfattats som bristfällig, och trots
att flera åtgärder har vidtagits för att stärka kommunikationen mellan medlem
marna, visar resultatet att dessa insatser endast haft begränsad effekt. De vidtagna
åtgärderna har syftat till att etablera nya kommunikationskanaler och att priori
tera möten mellan de separata arbetsgrupperna, i syfte att främja en gemensam
förståelse för den pågående produktutvecklingen. Dessa åtgärder har konkretiserats
i form av rutiner såsom att informera projektmedlemmar vid påbörjandet av ny
funktionalitet samt att konsekvent använda Kanban-brädet för ökad transparens
och samordning.

Enligt Ken Schwaber [29], medskaparen av Scrum, är det vanligt att missför
stånd och dubbelarbete uppstår i stora team som arbetar med Scrum. Enligt
Schwaber innebär stora team 7 personer eller fler. Det innebär att det som teamet
har upplevt som ett problem är vanligt och kan vara förväntat i stora projekt, och
det finns åtgärder att tillämpa för att förhindra att det sker igen. I de fall som
dubbelarbete uppstod kommunicerades problemet mellan medlemmarna och rutiner
infördes för att minska risken att det sker igen. En lärdom som följer är alltså att
rutiner gällande kommunikation bidrar till projektframgång.

Gällande den bristande kommunikationen med kunden är en orsak till detta
teamets ringa erfarenhet av att utveckla en produkt åt extern beställare. Detta
projektarbete har givit lärdom angående hur man hanterar en extern kund. Lärdo
mar från detta har varit att försöka arbeta sig runt problemet med kundfrånvaro
genom att fortsätta utveckling på de delar av systemet som inte kräver kundens
svar och att söka alternativa sätt att kommunicera, vilket beskrivs i Avsnitt 5.5.1.4.
Ytterligare en lärdom har varit att ta initiativ till uppföljande mejl om kunden inte
återkopplar inom rimlig tid.

6.1.4.4 Scrum: Kombination av andra arbetsmetoder

Att ha en process som arbetsfokus och sedan kontinuerligt anpassa den till gruppen
har varit en lärorik erfarenhet. Scrum är den arbetsprocess som låg i huvudfokus för
gruppen och Kanban fanns till som ett extra tillägg, se Avsnitt 5.3.1. Trots detta
följde gruppen inte en klassisk agil Scrum-metod med flera iterativa moment. Istället
använde gruppen sig av sprintar som pågick under faser och hade en specialanpassad
produktbacklogg som bestod av milstolparna. Orsaken till att fasplaneringen inte
grerades med Scrum var att flera dokument, däribland designdokumentet, skulle
lämnas in tidigt i projektprocessen. Därav hade gruppen svårt att till en början
etablera ett iterativt arbetssätt då kursen krävde en design- och planeringsfas av
studenterna redan i början på kursen. I det fortsatta arbetet hanterades detta
genom att faserna innehöll sprintar, där arbetet bedrev iterativt inom respektive
fasområde. Exempelvis reviderades och omarbetades koden successivt under imple

36

mentationsfasen. En intressant lärdom kan därför vara att det är möjligt att
kombinera den agila arbetsmetoden Scrum med linjär fasplanering i ett grupprojekt.

Erfarenheten av att integrera Kanban i Scrum har varit en intressant erfarenhet
för gruppen. Det finns många fördelar när Kanban används på rätt sätt, medan
den för med sig nackdelar när det används på fel sätt. Exempelvis ger Kanban en
god översikt över sprintuppgifterna och deras status. Detta gör det enkelt att se
vem man ska höra av sig till vid frågor och funderingar. De negativa aspekterna
som projektgruppen har upplevt med Kanban är osäkerhet, ofärdiga uppgifter och
dubbelarbete. De gånger som projektmedlemmar inte hade tilldelats ansvar för
uppgifter under en sprint, hade dessa uppgifter dessutom en lägre chans att bli
avklarade under sprinten. Å andra sidan förekom det situationer där medlemmar
åtagit sig uppgifter utan att uppdatera Kanban-brädets status utefter uppgifternas
status. Detta kunde resultera i dubbelarbete och missförstånd kring huruvida
uppgifter var slutförda eller inte, samt andra liknande problem. Lärdomen som följer
är att ett Kanban-bräde endast fungerar effektivt om det underhålls kontinuerligt,
vilket förutsätter ett aktivt deltagande från teamet och att varje uppgift tilldelas
en ansvarig person.

6.1.4.5 Scrum: Formulering av uppgifter

Sprintuppgifter var något som uppkom varje sprint retrospektiv och utvecklades för
varje sprint. Under sprintar som varade under två veckor eller mer upplevdes det
som extra utmanande att formulera tydliga, relevanta uppgifter för hela sprinten och
samtidigt hålla en rimlig arbetsbelastning. Gruppen fick erfarenhet av att tydliga,
realistiska och mätbara uppgifter hade större sannolikhet att bli färdiga under
sprinten. Denna lärdom stämmer väl överens med konceptet SMART:a mål [30],
vilket handlar om att skapa mål som är specifika (S), mätbara (M), accepterade (A),
realistiska (R) och tidssatta (T). Enligt Bahrami et al [30] har dessa typer av mål
större chans att avklaras än andra. En intressant aspekt är att projektmedlemmarna
i början av varje sprint uppfattade uppgifterna som tydliga i den mån att de kunde
uppfattas som SMART:a. Men under sprintens genomförande framkom att flera
uppgifter i praktiken saknade tillräcklig konkretisering och vissa var för tidskonsu
merande i relation till sprintens längd. Denna erfarenhet tydliggör vikten av att
gå igenom uppgifter och kritiskt granska och bedöma deras tydlighet, omfattning
och genomförbarhet i relation till gruppens resurser och sprintens varaktighet. En
annan sak som möjligtvis bidrog till att vissa sprintuppgifter inte blev avklarade
var att de under fyra sprintar saknade tydlig koppling till milstolparna och kraven.

Under projektets gång ökade antalet sprintuppgifter markant, se Figur 1, vilket
ledde till ett omfattande arbete för produktägaren. Detta kan ha bidragit till att
uppgifterna uppfattades som stora och generella av projektgruppen. Detta resul
terade i att projektgruppen hade svårt att slutföra uppgifterna och även att fördela
dem till specifika personer. Därmed beslutades det att dela på produktägaransvaret
mellan frontendutvecklingsledare, backendutvecklingsledare och dokumentansvarig.
Detta resulterade i att uppgifterna som presenterades vid sprintplaneringsmötet
blev mer specifika och hanterbara. Lärdomen från detta var att uppdelning av
produktägare resulterade i detaljerade uppgifter som var fokuserade på respektive

37

utvecklingsområde. Det innebar också att mindre arbetsbelastning per produktä
gare. En möjlig nackdel med fördelningen var att detta resulterade i att ingen
enskild person i projektgruppen hade fullständig insikt i alla detaljer kring sprintens
uppgifter. Detta ställde höga krav på projektgruppens kommunikation för att
säkerställa ett samordnat arbete.

6.1.4.6 Scrum: Utveckling av en process

Slutligen är det viktigt att lyfta den iterativa och processförbättrande delen av
Scrum och projektgruppens arbetsprocess. Sprint retrospektiv-möten har varit fun
damentalt för processförbättringar under projektets gång. De har hjälpt gruppen att
inse vad som fungerat bra och vad som fungerat mindre bra under sprintarna. Detta
har sedan lett till att gruppen kommit på förbättringsförslag som sedan applicerats
på nästkommande sprint. Följaktligen är anpassning av Scrum-arbetsprocessen efter
gruppens behov och önskningar viktigt för att stärka gruppens produktivitet och
möjliggöra projektframgång.

Vidare kan liknande lärdomar dras gällande det generella arbetssättet som
kandidatgruppen använde. Gruppen använde en modifierad stil av Scrum som
involverade både Kanban-bräde och fasplanering och alla dessa modifierades under
projektets gång. Detta ger då en viktig insikt vilket är att arbetsprocesser behöver
anpassas till gruppen och de förutsättningar projektet har.

6.1.5 Tekniska erfarenheter

Genom kunskapsdelningen av de mer erfarna fick resten av gruppen en större
förståelse för de tekniska detaljerna. Gällande databasdesign och modellering finns
några aspekter att ta upp. En lärdom som gruppen har fått är att en databasdesign
och modellering av datatyper underlättar implementationsarbetet. Det underlättar
planering och ger projektmedlemmarna en förståelse för vad de ska implementera.
Det ska även tilläggas att design och modeller kontinuerligt bör följas upp och
revideras under projektets gång. Detta möjliggör anpassning till förändrade behov
under utvecklingen och bidrar till att de förblir ändamålsenliga verktyg i arbetet.
Ytterligare en lärdom är att ändringar av datastrukturen under implementeringen
av ett system bör kommuniceras. Syftet är att uppnå samförstånd mellan projekt
medlemmarna samt att säkerställa att de nya ändringarna inte bryter mot designen.

Det har också visat sig vara viktigt att arbetsgrupperna som arbetar med
frontend och backend tidigt samordnar kring vilken data som förväntas överföras
mellan servrarna. Syftet med detta är att skapa en modellstruktur för backend som
sedan kan efterföljas under implementeringen utan att större ändringar behöver
göras i ett senare skede.

Om projektet skulle genomföras igen skulle ett närmare samarbete mellan fron
tend- och backendgruppen, exempelvis genom parprogrammering, kunnat minska
antal missförstånd och behovet av omarbetningar i backend-koden. Trots att detta
skulle innebära en högre inlärningströskel för att sätta sig in i både backend och
frontend, skulle det sannolikt leda till en effektivare utvecklingsprocess och färre
tekniska hinder.

38

Det finns många fördelar fördelar kring frontendramverket Svelte som tas upp
under Avsnitt 6.1.3, men branchstandard är React. Av denna anledning är det
möjligt att frontend hade varit skriven i React om projektet gjordes på nytt.

6.1.6 Systemanatomins upplevda värde

Enkäten om systemanatomins värde, vars resultat redovisas i Tabell 6, visade att
frågorna hade medelvärden mellan 1 och 2.7 med måttlig till låg standardavvikelse.
Det indikerar att majoriteten av projektmedlemmarna ansåg att systemanatomin
inte var ett stöd under projektets genomförande.

Svaren om faktisk användning särskiljer sig då samtliga medlemmar svarade
att de inte använde systemanatomin regelbundet. Samtidigt indikerade svaren på
fråga 1, som hade ett medelvärde på 2.7, att systemanatomin underlättade den
övergripande förståelse av systemet. Den höga standardavvikelsen, som låg på 1.2,
är en indikation på att det fanns delade åsikter om det stöd systemanatomin var för
gruppen men utesluter inte möjligheten att den hade potential att vara tillämpbar
vilket kan tyda på att den inte nyttjades korrekt.

Den dåliga uppföljningen av systemanatomin kan ha berott på att det initialt
inte fanns alternativ till att använda en systemanatomi, då det var ett obligatoriskt
moment under ett tidigt skede i kursen. Det kan ha medfört att arbetet med syste
manatomin inte vidareutvecklades efter inlämning då det inte fanns krav på fortsatt
uppföljning av den. Taxén och Olow menade att systemanatomin fungerar som en
lämplig modell främst i början av projektet, vilket överensstämde med resultaten
från enkäten [31].

Systemanatomin låg till grund för flera designbeslut i slutet på planeringsfasen.
Figma användes för att planera och illustrera användarflödet för klienten, vars
design togs fram med hjälp av systemanatomin som definierat webbapplikationens
vyer. EER-diagram och API-ändpunktsdiagram användes för att strukturera data
basens entiteter, relationer, attribut och hierarkier samt för att specificera vilka
typer av indata som resulterade i en viss utdata från API:n. Även dessa verktyg
utgick ifrån systemanatomin när den ursprungliga designen skapades.

6.1.7 Uppdelningen frontend-backend

Som nämndes i Avsnitt 5.8.3 gjorde uppdelningen i två arbetsgrupper det möjligt
att jobba parallellt och fokuserat på sitt område. Här diskuteras några upplevda
för- och nackdelar med uppdelningen, samt möjliga orsaker till dessa.

Inledningsvis var den inlärning av programmeringsspråk och verktyg som
krävdes för en enskild gruppmedlem lägre, vilket bidrog till att skynda på imple
menteringsfasens uppstart. Men även under arbetets gång fanns det fördelar med
att ha gjort en tydlig gruppuppdelning. Eftersom inte alla nio medlemmar arbetade
med både frontend och backend, var det färre personer som arbetade i samma
kodbas, vilket troligen minskade risken för Git-konflikter vid sammanslagning av
olika versioner av samma fil.

En nackdel med uppdelningen var dock den låga förståelsen för funktionaliteten
och de implementationer som andra utvecklingsgruppen hade skapat. De som inte
arbetade med frontend-koden hade svårare att förstå och hantera felmeddelanden

39

vid testning av fullstack-implementeringar. Samtidigt upplevde de som enbart
arbetade med frontend ofta problem med att få backend att fungera, särskilt
när databasfilen inte var uppdaterad eller när gamla eller felaktiga migrationsfiler
användes. Ett sätt att minska problematiken med att inte förstå varandras kod
hade varit att säkerställa nära och kontinuerlig kommunikation mellan frontend-
och backend-grupperna.

Långsiktigt innebar den tydliga uppdelningen att vissa projektmedlemmar
bara fick erfarenhet inom ena sidan av projektet. Beroende på framtida karriär och
intressen kan detta ha påverkat projektmedlemmarna negativt. Exempelvis genom
att man inte fick någon erfarenhet av frontendutveckling under sin studietid men
hade behövt det senare i karriären.

Ett alternativt arbetssätt hade kunnat vara att till en början dela upp gruppen
i frontend och backend men senare dela in på olika funktioner i systemet istället.
Det hade gjort att kunskapsdelningen hade kunnat öka och att alla hade fått en
bättre förståelse för hela systemet.

Tidredovisningssystemet TIDIG var en relativt liten och okomplicerad web
bapplikation. Att dela arkitekturen i en frontend- respektive backend-server kan
därför ha fört med sig mer krångel än nytta. Arkitekturens kvalitet påverkas av
dess modifierbarhet, alltså hur komplicerat det är att förändra systemet, och dess
pålitlighet, som mäts genom hur många procent av en viss tidsperiod som systemet
är i drift [32].

En uppdelad arkitektur kan göra det svårare för underhållaren av systemet att
utföra en ändring eftersom det kan vara oklart var i systemet ändringen ska ske.
Samma princip gäller när ett problem uppstår. Att systemet är uppdelat i frontend-
och backend-servrar kan därför öka tidskostnaden för ändringar och förlänga tiden
servern ligger nere vid problem. Fördelen med att ha systemet uppdelat är fram
förallt att det blir mer skalbart. Exempelvis hade en extra frontend-server kunnat
sättas i drift och ta emot anrop utan att en extra backend-server nödvändigtvis
behövts, men med tanke på systemets förväntade mängd användare kommer ingen
skalning förmodligen behöva ske. Därför skulle en enda server kunna vara ett bättre
alternativ för ett liknande projekt.

Ett exempel på problematik som hade kunnat uppstå i ett alternativt imple
mentationssätt, med en öppen backend-server är att en illvillig användare skulle
kunna komma åt data som det inte är tänkt att de ska ha tillgång till. Detta hade
användaren förhållandevis enkelt kunnat göra med endpoint discovery. Endpoint
discovery är att kartlägga ändpunkterna på ett API genom att exempelvis skicka
ett stort antal förfrågningar med gissningar på ändpunkter [33].

Vidare bidrog uppdelningen mellan frontend och backend till en tydligare
struktur i projektet, särskilt vad gäller ansvarsfördelning och var i systemet olika
delar av logiken skulle implementeras. Om all utveckling hade skett inom Svelte hade
det varit svårare att särskilja vad som exempelvis hörde till databasen. Den tydliga
avgränsningen mellan gränssnitt och serverlogik gjorde det enklare att samarbeta
över gruppgränser och minskade risken för otydlig kod. Detta stöds av slutsatserna i
en studie som utvärderade samspelet mellan en uppdelad frontend och backend, där
Drupal användes för backend och ReactJS för frontend [34]. Studien visar att dessa

40

tekniker kompletterade varandra väl, där Drupal stod för datalagring och auktori
sering medan ReactJS erbjöd ett användargränssnitt. Även om slutsatserna inte
generaliseras till alla projekt, visar studien att en tydlig separation mellan frontend
och backend kan vara fördelaktig för både utvecklingsflöde när kommunikationen
mellan dem fungerar väl.

6.2 Metod
I avsnittet diskuteras de metoder som definierades i Kapitel 4. Fokus ligger på att
granska metodernas styrkor och svagheter samt vilka risker som kan ha påverkat
resultatet. Vid skrivandet av rapporten har källor valts ut noggrant, vilket beskrivs
även beskrivs i detta avsnitt.

6.2.1 Kundkontakt

Kontinuerlig kontakt med kunden samt användning av en kravspecifikation har
varit viktigt för att säkerställa att produkten skapar värde för kunden. Genom
regelbundna möten och avstämningar kunde fel och missförstånd upptäckas tidigt
och åtgärdas. En risk med denna metod är att kravspecifikationen främst speglar
kundens uttryckta behov och inte nödvändigtvis de faktiska behoven som finns hos
slutanvändarna. Eftersom kunden önskade ett system med samma funktionalitet
som det befintliga, men med förbättrad användarvänlighet, hade det varit värdefullt
att få tillgång till det nuvarande systemet för att skapa en tydlig förståelse för
dess funktion. Då detta inte var möjligt har det stundtals varit en utmaning för
projektgruppen att få en klar bild av hur det nuvarande systemet faktiskt fungerar.
Ytterligare en utmaning har varit att kunden har varit mycket upptagen och svår
att nå vilket resulterat i att projektgruppen behövt anpassa implementationen av
produkten utefter detta.

6.2.2 Användarundersökningar

Användarundersökningar och SUS-mätningar har använts för att mäta användar
vänlighet och säkerställa att TIDIG är lätt att använda. Metoderna bidrar till att
skapa värde genom att fånga upp användarnas faktiska upplevelser. En utmaning är
dock att svar från användare kan vara subjektiva och är inte alltid representativa för
alla användare. En begränsning i projektet är att användarundersökningarna inte
genomfördes av produktens slutanvändare. Utvecklingen av produkten skedde i stort
sett utan kontinuerlig återkoppling från slutanvändarna. Detta var ett medvetet val
med tanke på att det är tidskrävande att kontinuerligt demonstrera produkten för
kunden och anpassa den baserat på feedback. Samtidigt hade ett närmare arbete
med slutanvändarna kunnat ge djupare insikter i deras behov och därmed skapa
större värde för kunden.

Ett högre SUS-poäng på användartesterna under den andra sprinten kan
sannolikt förklaras av att projektgruppen redan visste hur produkten fungerade. Det
lägre resultatet under den femte sprinten kan förklaras av att testpersonerna inte
var insatta i projektspecifika termer och förstod exempelvis inte vad det innebar att
vara en administratör. De interna användarundersökningar som genomfördes före
utvecklingsfasen fyllde syftet att tidigt identifiera problem och oklarheter i designen.
Valet att utföra testerna internt i projektgruppen effektiviserade processen. Å andra

41

sidan hade ett bredare perspektiv kunnat uppnås genom att inkludera externa
testpersoner med exempelvis större åldersvariation. Samtidigt innebar de interna
testerna fördelar såsom att samtliga projektmedlemmar, både från frontend- och
backendteamet, blev delaktiga i applikationens utformning och design.

6.2.3 Design av applikationen

Kunden uttryckte ingen önskan om produkten skulle vara mobilanpassad. Samti
digt omfattar tillgänglighetskrav anpassning för olika skärmstorlekar, och kunden
önskade att produkten skulle vara enkel att använda. Det är fortfarande oklart hur
mycket värde mobilvyn skapar för kunden eftersom det först kan utvärderas efter
en tids användning av produkten. Däremot är det klart att mobilanpassningen inte
har någon negativ påverkan på produktens värde och användarvänlighet.

6.2.4 Scrum och samarbete med kunden

I en klassisk version av Scrum fokuserar man generellt på att leverera en fungerande
produkt i slutet av varje sprint, och det är vanligt att hålla regelbundna demon
strationer för kunden [18]. Projektgruppen har inte helt utgått från detta i sin
arbetsprocess. Projektgruppen har däremot arbetat för att alltid ha fungerande kod
på main-branchen, men det har inte alltid genomförts tester för att säkerställa dess
funktionalitet. Fördelen med att leverera en fungerande produkt i slutet av varje
sprint hade varit möjligheten att genomföra fler användbarhetstester på produkten
och ge kunden möjlighet att delta i en demonstration. Att involvera kunden mer
i form av regelbundna demonstrationer hade varit värdefullt med tanke på att
produktens största fokus låg i dess användbarhet. Dessutom hade kontinuerlig
feedback från kunden kunnat ge ökat värde, då de hade blivit mer involverade i
riktningen av produkten. Samtidigt innebär detta en risk för förseningar, med tanke
på att kunden periodvis har varit svår att få kontakt med. Sådana förseningar
skulle i sin tur kunna påverka produktens kvalitet, med tanke på den begränsade
tidsbudgeten.

I en studie som genomfördes i syfte att undersöka kundens påverkan på mjukva
ruutvecklingsprocessen observerades flera verkliga mjukvaruprojekt [35]. Resultaten
visade att ett aktivt kunddeltagande har en positiv inverkan på projektets kvalitet.
Samtidigt överskred samtliga observerade projekt sin budget eller tidplan, delvis på
grund av att kunden vid flera tillfällen hade otillräckliga resurser, vilket skapade
flaskhalsar och ledde till att viktig kommunikation uteblev. Baserat på denna studie
är det oklart om den alternativa metoden skulle ha skapat ett ökat kundvärde,
eftersom detta förutsätter att kunden har tillräckliga resurser för att delta aktivt.
Utan sådana resurser finns en risk att utvecklingsarbetet försenas.

6.2.5 Erfarenhetsinsamling

Användningen av Scrum har upplevts som ett effektivt sätt att ständigt förbättra
arbetsprocesser. Efter retrospektiven har projektgruppen kunnat identifiera vad som
fungerade bra och vad som behövde förbättras, genom den processdokumentation
som utförts.

Utvärderingar i slutet av sprints har använts för att samla erfarenheter av
Scrum. Detta har gett en överblick över projektgruppens upplevelser och identifierat

42

förbättringsområden. Dock finns risken att en utvärdering kan bli för ytlig och inte
ge tillräckligt med insikter för att göra meningsfulla förändringar.

Att använda en erfarenhetsrapport i slutet av projektet har varit en bra metod
för att sammanfatta och dokumentera lärdomar. Detta har bidragit till att skapa
en gemensam kunskapsbas för framtida projekt. En risk med att skriva rapporten
i slutet av projektet var att kunskap kunde förloras om den inte dokumenteras
kontinuerligt under projektets gång. En potentiell idé för att motverka detta är
att varje gruppmedlem medvetet dokumenterar sina erfarenheter under projektets
gång.

6.2.6 Skapande av systemanatomi

Processen för att utveckla systemanatomin, där flera versioner togs fram av olika
arbetsgrupper, bidrog till att fånga upp olika perspektiv och förbättra kvaliteten. En
risk med denna metod kan dock ha varit att designbeslut som hela gruppen kunde
ha diskuterat missades, vilket kan ha lett till att vissa delar av designen blev mindre
optimal. Möjligen skulle designen blivit mer komplett om varje gruppmedlem var
tvungen att uppvisa en förståelse för alla designbeslut, hur små de än kan ha varit.

Feedback från handledare och examinator har spelat en stor roll för att säker
ställa att systemanatomins struktur och innehåll var tydliga och relevanta. Det har
gjort det enklare att upptäcka problem tidigt i processen och åtgärda dem.

6.2.7 Uppföljning av systemanatomi

Systemanatomin låg till grund för flera designbeslut i slutet på planeringsfasen.
Dessa beslut introducerade andra designverktyg, som diskuteras i Avsnitt 6.1.6.
Vidare byggdes det varken vidare på systemanatomin samt att den inte användes
som referens under implementationsfasen. Detta kan ha lett till att arbetet blev
mer oorganiserat och sämre kommunikation mellan medlemmar. Erik Schumann
[21, s. 107-114] menar att medlemmar i team som använder systemanatomi har
större möjlighet att jobba självständigt eftersom varje medlem har en tydligare bild
av vad som behövs göras. Projektmedlemmarna kunde jobba mycket självständig
men eftersom systemanatomin inte följdes upp, eller var i fokus i arbetsprocessen,
är det svårt att påvisa att systemanatomin bidrog till det.

En anledning till att projektmedlemmarna kunde jobba självständigt kan ha
varit att de nya designverktygen valdes som ett alternativt arbetssätt, då de
fortsatt följdes upp och uppdaterades vid ändringar i planeringen. De upplevdes
mer djupgående och gav ett bättre stöd för projektgruppen under utvecklingen.
Projektmedlemmarna kunde få en bättre uppfattning av hur projektet var struktu
rerat och även få en övergripande uppfattning över hur kommunikationen mellan de
olika anatomerna skulle ske, inte bara om vilka anatomerna som skulle kommunicera
med varandra.

6.2.8 Källkritik

Källorna i rapporten har noggrant valts ut för att säkerställa en hög kvalitet och
relevans. Vetenskapliga artiklar har använts i stor utsträckning för att stödja påstå
enden och argument, men eftersom projektet använder en stor mängd olika verktyg
och teknologier som inte alltid har vetenskapliga artiklar kopplade till sig, har även

43

icke-vetenskapliga källor använts. I sådana fall har källor närmast verktyget eller
teknologin valts, som referensdokumentationer eller manualer skrivna av projekt
medlemmarna själva. Dessa källor har granskats kritiskt för att säkerställa att de
är pålitliga och relevanta för projektet.

6.3 Arbetet i vidare sammanhang
Projektet har flera viktiga samhälleliga och etiska aspekter. Under Avsnitt 5.4
presenterades gruppens bedömning över systemets hållbarhet. I detta avsnitt utreds
mer noggrant vad TIDIG har för påverkan på världen i flera aspekter.

6.3.1 Etiska aspekter

Fysiska sätt att mäta arbetstimmar, exempelvis med stämpelklockor, säkerställer
att anställda faktiskt är på arbetsplatsen när de uppger ha varit det. Eftersom
TIDIG är en webbapplikation, kan tid redovisas varifrån som helst. På detta vis
är en potentiell negativ etisk aspekt med systemet att det möjliggör för oärliga
anställda att redovisa mer tid än de faktiskt har arbetat. Å andra sidan kan
anställda känna att företaget inte litar på dem om ett mer övervakande system
används. I denna mening är det en positiv etisk aspekt att TIDIG ger mycket frihet
åt tidredovisare.

En annan viktig samhällelig aspekt är tillgänglighetskraven EN 301 549 [36]
och WCAG 2.1 [3]. Genom att säkerställa att TIDIG uppfyller dessa krav bidrar
projektet till ökad digital inkludering och jämlikhet på arbetsplatsen. Som en del
av LiU:s digitala infrastruktur är det viktigt att TIDIG är tillgängligt för alla
användare, oavsett deras tekniska kunskaper eller funktionsvariationer.

6.3.2 Strukturella aspekter

I och med att TIDIG driftsätts på en server på Linköpings universitet behålls
kontrollen av den lagrade datan. Det kan i allmänhet vara fördelaktigt att göra
sig så oberoende av externa faktorer som möjligt. Molnplattformer bygger ofta på
virtualisering av flera servrar på samma fysiska maskin, vilket öppnar för dataläckor
mellan olika tjänster [37]. Av den anledningen är en lokal driftsättning av systemet
troligtvis det säkraste alternativet ur DIGIT:s perspektiv.

6.3.3 Individuella aspekter

Systemet TIDIG har aspekter som skapar möjligheter för individen som rapporterar
sin arbetstid. En sådan kan exempelvis vara att arbetsbelastningen minskar med ett
enklare rapporteringssystem. Den snabba inloggningen och att det är få knapptryck
som krävs för att rapportera tid, gör att redovisning av tid kräver mindre tid. En
annan aspekt som framför allt påverkar nya användare är att med det här nya
systemet är inlärningskurvan som krävs för att förstå TIDIG och använda det, för
hållandevis låg jämfört med föregångaren. Arbetsbelastningen för administratören
har potential att bli mycket mindre med det här systemet. Att få alla tidsrapporter
i ett modernt system som sammanställer informationen automatiskt, kan göra att
administratören slipper göra en stor mängd onödigt arbete.

44

6.3.4 Sociala aspekter

Ett bra system för tidredovisning kan ge effekten att tilliten mellan både tidredo
visare och administratörer ökar. Ett system som är tillräckligt användarvänligt för
att man ska vilja använda det kan föra med sig effekten att man som användare
blir noggrannare med rapporteringen. Att användare är noggrannare kan förbättra
Digitaliseringsavdelningens anseende på lång sikt.

6.3.5 Tekniska aspekter

TIDIG autentiserar användare genom LiU:s Microsoft SSO. Detta är positivt dels
för att användare slipper skapa fler konton, och dels för att Microsoft SSO är ett
beprövat och säkert system. TIDIG är inte byggt med oändlig skalning i åtanke, och
har inte heller testats i större storleksordningar än 100 samtidigt aktiva användare.
I denna aspekt är TIDIG dåligt förberedd på plötslig uppskalning.

6.3.6 Ekonomiska aspekter

I och med att TIDIG har hög användarvänlighet, möjliggör det för kunden att spara
arbetstimmar för att det krävs mindre administration med ett smidigt och intuitivt
system. Ytterligare en positiv ekonomisk effekt som TIDIG användbarhet möjliggör
är att det är svårt att råka rapportera fel. Den sista positiva ekonomiska effekt som
TIDIG kan ha för kunden är att det möjliggör bättre översikt över fördelning av
arbetad tid, vilket möjliggör utvärdering och effektivisering.

6.3.7 Miljömässiga aspekter

TIDIG har konstruerats för att vara plattformsoberoende och kan därmed drift
sättas både på lokala och externa servrar. Eftersom kunden väljer att driftsätta
TIDIG lokalt undviks användningen av stora utländska datorhallar, som annars kan
ha negativa konsekvenser för miljön. Stora datacenter drar mycket elektricitet och
kräver stor volym vatten [38]. Om TIDIG driftsätts lokalt, undviks dessa negativa
konsekvenser för miljön, och blir därmed ett miljömedvetet alternativ.

45

7 Slutsatser

7.1 Hur kan tidredovisningssystemet TIDIG implementeras

så att man skapar värde för kunden?
För att skapa värde för kunden analyserades behoven genom kravframkallande
möten, användarformulär och en kravspecifikation. För att möta kundens behov
utvecklades produkten med fokus på användbarhet, anpassades för olika skärmstor
lekar och användbarhetstestades. Ramverket Svelte användes för att effektivisera
utvecklingen och frigöra tid till att fokusera på användarupplevelsen.

Ett strukturerat arbetssätt med välskriven dokumentation och visualisering av
arbetsflödet med Kanban möjliggjorde ett effektivt arbete inom projektgruppen.
I kombination med en kontinuerlig anpassning av arbetsmetoden Scrum frigjordes
mer tid för produktutveckling och ökade därmed värdet för kunden. Mätningar av
LCP, kodtäckning och användbarhet har skapat kundvärde genom att säkerställa
att produkten håller hög kvalitet.

Slutligen, genom effektiva arbetsprocesser, bra samarbete, god uppfattning av
kundens behov och bra val av ramverk kan TIDIG implementeras i enlighet med
kundens vision och därmed skapa en värdefull produkt.

7.2 Vilka erfarenheter kan dokumenteras från TIDIG som

kan vara intressanta för framtida projekt?
Erfarenheterna under projektet har resulterat i flera lärdomar som kan vara intres
santa för framtida projekt. Att etablera rutiner som främjar kommunikationen
under ett projekt är viktigt för att stödja gruppens samarbete. Det är också viktigt
att arbeta runt problem och hitta alternativa kommunikationsvägar vid kundfrån
varo. Vidare underlättar tydliga instruktioner inlärning. Projektplaneringen visade
behovet av en tidsbuffert och flexibilitet för att hantera oförutsägbara situationer.
Inom Scrum var det värdefullt att utforma sprintuppgifter efter SMART:a mål
och att kontinuerligt anpassa Scrum efter gruppens behov. Avslutningsvis kan det
konstateras att datamodellering bör utformas i samverkan mellan backend- och
frontend-arbetsgrupperna för att främja en effektiv och sammanhängande imple
mentation.

46

7.3 Vilket stöd kan man få genom att skapa och följa upp en

systemanatomi?
Att inleda ett projekt med att skapa en systemanatomi gav värdefulla insikter
och låg till grund för arbetet att designa TIDIG. Systemanatomin visade sig även
vara till hjälp när ett översiktligt blockschema och arkitekturen för TIDIG skulle
tas fram.

Gruppens upplevelse av systemanatomin som verktyg är att det inte var ett
stöd för utvecklingen, men att det kan bero på att systemanatomin som skapades
inte följdes upp. Det kan även bero på att andra designverktyg användes som
upplevdes ge mer stöd för utvecklingen.

7.4 Vilka för- och nackdelar finns med att dela upp en

webbapplikation som TIDIG i en frontend- respektive

backend-server med separata arbetsgrupper?
Uppdelningen i två arbetsgrupper hade både för- och nackdelar. De främsta förde
larna var att det möjliggjorde ökat parallellt arbete och minskade kodkonflikter
samt att utbildningstiden minskade eftersom alla inte behövde lära sig samtliga
teknologier.

De främsta nackdelarna var att viss funktionalitet tog onödigt lång tid att
implementera, framförallt eftersom det ofta uppstod problem där frontend-gruppen
behövde en ändpunkt från backend-gruppen för att testa funktionalitet. Samtidigt
var det svårt för backend-gruppen att skapa ändpunkterna i förväg eftersom fron
tend-gruppen inte visste exakt vilka de skulle behöva och hur de skulle fungera.

47

8 Referenser

[1] Google, ”Largest Contentful Paint (LCP)”, Google. Tillgänglig vid: https://
web.dev/articles/lcp. [Åtkomstdatum: 21 januari 2025]

[2] ”EN 301 549: Accessibility requirements for ICT products and services”,
European Telecommunications Standards Institute (ETSI), technical report,
2021. Tillgänglig vid: https://www.etsi.org/deliver/etsi_en/301500_301599/
301549/03.02.01_60/en_301549v030201p.pdf

[3] ”Web Content Accessibility Guidelines (WCAG) 2.2”, World Wide Web
Consortium (W3C), technical report, dec. 2024. Tillgänglig vid: https://
www.w3.org/TR/2024/REC-WCAG22-20241212/

[4] Linköpings universitet, ”Digitaliseringsavdelningen (DIGIT)”, Linköpings

universitet. Tillgänglig vid: https://liu.se/organisation/liu/uf/digit.
[Åtkomstdatum: 25 februari 2024]

[5] Mozilla, ”HTML: HyperText Markup Language”, Mozilla. Tillgänglig vid:
https://developer.mozilla.org/en-US/docs/Web/HTML. [Åtkomstdatum: 07
mars 2025]

[6] Mozilla, ”CSS styling basics”, Mozilla. Tillgänglig vid: https://developer.
mozilla.org/en-US/docs/Learn_web_development/Core/Styling_basics.
[Åtkomstdatum: 07 mars 2025]

[7] Tailwind CSS, ”Rapidly build modern websites without ever leaving your
HTML.”, Tailwind CSS. Tillgänglig vid: https://tailwindcss.com/.
[Åtkomstdatum: 07 mars 2025]

[8] DaisyUI, ”The most popular component library for Tailwind CSS.”, DaisyUI.
Tillgänglig vid: https://daisyui.com/. [Åtkomstdatum: 07 mars 2025]

[9] ECMA International, ”ECMAScript® 2023 Language Specification,
ECMA-262, 14th edition, June 2023”, ECMA International. Tillgänglig vid:
https://tc39.es/ecma262/. [Åtkomstdatum: 23 maj 2025]

[10] TypeScript, ”TypeScript is JavaScript with syntax for types.”, TypeScript.
Tillgänglig vid: https://www.typescriptlang.org/. [Åtkomstdatum: 07 mars
2025]

48

https://web.dev/articles/lcp
https://web.dev/articles/lcp
https://web.dev/articles/lcp
https://www.etsi.org/deliver/etsi_en/301500_301599/301549/03.02.01_60/en_301549v030201p.pdf
https://www.etsi.org/deliver/etsi_en/301500_301599/301549/03.02.01_60/en_301549v030201p.pdf
https://www.w3.org/TR/2024/REC-WCAG22-20241212/
https://www.w3.org/TR/2024/REC-WCAG22-20241212/
https://liu.se/organisation/liu/uf/digit
https://liu.se/organisation/liu/uf/digit
https://liu.se/organisation/liu/uf/digit
https://liu.se/organisation/liu/uf/digit
https://liu.se/organisation/liu/uf/digit
https://liu.se/organisation/liu/uf/digit
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/Styling_basics
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/Styling_basics
https://tailwindcss.com/
https://daisyui.com/
https://tc39.es/ecma262/
https://www.typescriptlang.org/

[11] S. Bhardwaz och R. Godha, ”Svelte.js: The Most Loved Framework Today”,
nr , s. 1–7, 2023, doi: 10.1109/INOCON57975.2023.10101104

[12] Microsoft, ”C# language documentation”, Microsoft. Tillgänglig vid:
https://learn.microsoft.com/en-us/dotnet/csharp/. [Åtkomstdatum: 10
februari 2025]

[13] Microsoft, ”ASP.NET Core”, Microsoft. Tillgänglig vid: https://dotnet.
microsoft.com/en-us/apps/aspnet. [Åtkomstdatum: 10 februari 2025]

[14] Microsoft, ”Entity Framework Core”, 11 december 2024, Microsoft.
Tillgänglig vid: https://learn.microsoft.com/en-us/ef/core/. [Åtkomstdatum:
26 februari 2025]

[15] T. Gustavsson, Agil projektledning, 5:e uppl. Stockholm, Sverige: Sanoma
Utbildning, 2024.

[16] E. S. Andersen, Systemutveckling: principer, metoder och tekniker. Lund,
Sverige: Studentlitteratur, 1994.

[17] K. S. och Mike Beedle, Agile software development with scrum. Upper saddle
river, NJ, USA: Prentice Hall, 2002.

[18] B. B. Frank Tsui Orlando Karam, Essentials of Software Engineering, Third
edition. Jones, Bartlett Learning, 2014, s. 345.

[19] N. Thomas, ”How To Use The System Usability Scale (SUS) To Evaluate
The Usability Of Your Website”, Tillgänglig vid: https://usabilitygeek.com/
how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-
website/. [Åtkomstdatum: 14 februari 2025]

[20] Suso Academy, ”Sustainability Awareness Framework (SusAF)”, Suso

Academy. Tillgänglig vid: https://www.suso.academy/en/sustainability-
awareness-framework-susaf/. [Åtkomstdatum: 04 maj 2025]

[21] L. Taxén, The System Anatomy – Enabling Agile Project Management. 2011,
s. 14–16.

[22] Scrum.org, ”The Kanban Guide for Scrum Teams”, 2018, Scrum.org.
Tillgänglig vid: https://www.qagile.pl/wp-content/uploads/2018/11/2018-
Kanban-Guide-for-Scrum-Teams.pdf

[23] Microsoft, ”Vad är Azure DevOps?”, 25 mars 2024, Microsoft. Tillgänglig
vid: https://learn.microsoft.com/sv-se/azure/devops/user-guide/what-is-
azure-devops?view=azure-devops. [Åtkomstdatum: 11 september 2024]

[24] Figma, ”What is Figma”, Figma. Tillgänglig vid: https://help.figma.com/
hc/en-us/articles/14563969806359-What-is-Figma. [Åtkomstdatum: 07 mars
2025]

[25] Microsoft, ”Your code editor. Redefined with AI.”, Microsoft. Tillgänglig vid:
https://code.visualstudio.com/. [Åtkomstdatum: 07 mars 2025]

49

https://doi.org/10.1109/INOCON57975.2023.10101104
https://learn.microsoft.com/en-us/dotnet/csharp/
https://dotnet.microsoft.com/en-us/apps/aspnet
https://dotnet.microsoft.com/en-us/apps/aspnet
https://learn.microsoft.com/en-us/ef/core/
https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
https://www.suso.academy/en/sustainability-awareness-framework-susaf/
https://www.suso.academy/en/sustainability-awareness-framework-susaf/
https://www.qagile.pl/wp-content/uploads/2018/11/2018-Kanban-Guide-for-Scrum-Teams.pdf
https://www.qagile.pl/wp-content/uploads/2018/11/2018-Kanban-Guide-for-Scrum-Teams.pdf
https://www.qagile.pl/wp-content/uploads/2018/11/2018-Kanban-Guide-for-Scrum-Teams.pdf
https://learn.microsoft.com/sv-se/azure/devops/user-guide/what-is-azure-devops?view=azure-devops
https://learn.microsoft.com/sv-se/azure/devops/user-guide/what-is-azure-devops?view=azure-devops
https://help.figma.com/hc/en-us/articles/14563969806359-What-is-Figma
https://help.figma.com/hc/en-us/articles/14563969806359-What-is-Figma
https://code.visualstudio.com/

[26] Google, ”lighthouse-ci”, Google. Tillgänglig vid: https://github.com/
GoogleChrome/lighthouse-ci. [Åtkomstdatum: 17 februari 2025]

[27] Google, ”Web Vitals”, Google. Tillgänglig vid: https://web.dev/articles/
vitals. [Åtkomstdatum: 20 februari 2025]

[28] A. Bacchelli och C. Bird, ”Expectations, Outcomes, and Challenges of
Modern Code Review”, i Proceedings of the 35th International Conference

on Software Engineering (ICSE), 2013, s. 712–721. doi: 10.1109/
ICSE.2013.6606617

[29] K. Schwaber, Agile Project Management with Scrum. Redmond, WA, USA:
Microsoft Press, 2004, s. 118.

[30] Z. Bahrami, A. Heidari, och J. Cranney, ”Applying SMART Goal
Intervention Leads to Greater Goal Attainment, Need Satisfaction and
Positive Affect”, International Journal of Mental Health Promotion, vol. 24,
nr 6, s. 869–882, 2022, doi: 10.32604/ijmhp.2022.018954

[31] L. Taxén och Peter Olow, ”On the Integration of Project Planning, System
Anatomy, and System Architecture”, 2013, Tillgänglig vid: https://www.
diva-portal.org/smash/get/diva2:297018/FULLTEXT02.pdf

[32] Z. Qin, X. Zheng, och J. Xing, Software Architecture. Springer Berlin,
Heidelberg, 2008, s. 222–224. doi: 10.1007/978-3-540-74343-9

[33] A. Hoffman, Web Application Security. O'Reilly Media, Sebastopol, 2024, s.
79–82.

[34] L. Lundqvist, ”Drupal and ReactJS: An Evaluation of Decoupled Drupal
and ReactJS”, Umeå University, 2023. Tillgänglig vid: https://www.diva-
portal.org/smash/get/diva2:1816129/FULLTEXT01.pdf

[35] E. Vanhala och J. Kasurinen, ”The Role of the Customer in an Agile
Project: A Multi-case Study”, 2019, s. 208–222. doi:
10.1007/978-3-030-33742-1_17

[36] Myndigheten för digital förvaltning, ”Det här är EN 301 549 och WCAG”,
02 juli 2024, Myndigheten för digital förvaltning. Tillgänglig vid: https://
www.digg.se/webbriktlinjer/lagar-och-krav/det-har-ar-en-301-549-och-wcag.
[Åtkomstdatum: 02 mars 2025]

[37] P. Samarati och S. De Capitani di Vimercati, Cloud Security. 2016. doi:
10.1002/9781118821930.ch17

[38] M. A. B. Siddik, A. Shehabi, och L. Marston, ”The environmental footprint
of data centers in the United States”, Environmental Research Letters, vol.
16, nr 6, s. 64017, maj 2021, doi: 10.1088/1748-9326/abfba1

50

https://github.com/GoogleChrome/lighthouse-ci
https://github.com/GoogleChrome/lighthouse-ci
https://web.dev/articles/vitals
https://web.dev/articles/vitals
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.32604/ijmhp.2022.018954
https://www.diva-portal.org/smash/get/diva2:297018/FULLTEXT02.pdf
https://www.diva-portal.org/smash/get/diva2:297018/FULLTEXT02.pdf
https://doi.org/10.1007/978-3-540-74343-9
https://www.diva-portal.org/smash/get/diva2:1816129/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1816129/FULLTEXT01.pdf
https://doi.org/10.1007/978-3-030-33742-1_17
https://www.digg.se/webbriktlinjer/lagar-och-krav/det-har-ar-en-301-549-och-wcag
https://www.digg.se/webbriktlinjer/lagar-och-krav/det-har-ar-en-301-549-och-wcag
https://doi.org/10.1002/9781118821930.ch17
https://doi.org/10.1088/1748-9326/abfba1

	Tillkännagivanden
	Figurer
	Tabeller
	Ordlista
	Projektspecifika termer
	Generella termer

	1 Inledning
	1.1 Motivering
	1.2 Syfte
	1.3 Frågeställning
	1.4 Avgränsningar
	1.5 Kontext
	1.5.1 Dokument tillhörande kandidatarbetet
	1.5.2 Roller och ansvar

	2 Bakgrund
	2.1 Kundens bakgrund
	2.2 Projektgruppens bakgrund

	3 Teori
	3.1 Programspråk, ramverk och bibliotek
	3.1.1 HTML
	3.1.2 CSS
	3.1.3 Tailwind CSS
	3.1.4 DaisyUI
	3.1.5 JavaScript
	3.1.6 TypeScript
	3.1.7 Svelte
	3.1.8 C# och .NET
	3.1.9 ASP.NET
	3.1.10 Entity Framework Core

	3.2 Arbetsprocesser
	3.2.1 Fasplanering
	3.2.2 Scrum
	3.2.2.1 Roller
	3.2.2.2 Möten
	3.2.2.3 Backlogg

	3.2.3 System Usability Scale (SUS)
	3.2.4 Sustainability Awareness Framework (SusAF)

	3.3 Verktyg
	3.3.1 Systemanatomi
	3.3.2 Kanban-bräde
	3.3.3 Azure DevOps
	3.3.4 Figma
	3.3.5 Visual Studio Code

	4 Metod
	4.1 Projektets faser
	4.2 Inledande arbetet
	4.3 Utbildning i form av workshoppar
	4.4 Arbetsuppdelning i frontend och backend
	4.5 Utveckling av arbetsprocess
	4.6 Kvalitetsmätningar
	4.7 Erfarenhetsinsamling
	4.7.1 Utvärdering av process
	4.7.2 Utvärderingsformulär
	4.7.3 Processdokumentation

	4.8 Systemanatomi
	4.8.1 Utvärdering av systemanatomin

	5 Resultat
	5.1 Värde för kunden
	5.2 Kvalitetsmätningar
	5.3 Processbeskrivning
	5.3.1 Process i fokus
	5.3.2 Utvärdering av process

	5.4 SusAF
	5.5 Gemensamma erfarenheter
	5.5.1 Processrelaterade erfarenheter
	5.5.1.1 Projektets faser och planering
	5.5.1.2 Delning av kompetens
	5.5.1.3 Scrum: Formulering av uppgifter
	5.5.1.4 Kommunikation

	5.5.2 Tekniska erfarenheter
	5.5.2.1 Databasdesign och modellering

	5.6 Systemanatomi
	5.7 Utvärdering av systemanatomins betydelse
	5.8 Systembeskrivning
	5.8.1 Frontend
	5.8.1.1 Tidredovisning
	5.8.1.2 Uppgifter
	5.8.1.3 Rapporter
	5.8.1.4 Statistik
	5.8.1.5 Profil

	5.8.2 Backend
	5.8.3 Uppdelningen av frontend- och backend-server
	5.8.4 Uppdelning i separata arbetsgrupper för frontend och backend

	6 Diskussion
	6.1 Resultat
	6.1.1 Mätningar på process
	6.1.2 Kvalitetstester
	6.1.3 Programmeringsspråk och ramverk
	6.1.4 Processrelaterade erfarenheter
	6.1.4.1 Planering
	6.1.4.2 Delning av kompetens
	6.1.4.3 Kommunikation
	6.1.4.4 Scrum: Kombination av andra arbetsmetoder
	6.1.4.5 Scrum: Formulering av uppgifter
	6.1.4.6 Scrum: Utveckling av en process

	6.1.5 Tekniska erfarenheter
	6.1.6 Systemanatomins upplevda värde
	6.1.7 Uppdelningen frontend-backend

	6.2 Metod
	6.2.1 Kundkontakt
	6.2.2 Användarundersökningar
	6.2.3 Design av applikationen
	6.2.4 Scrum och samarbete med kunden
	6.2.5 Erfarenhetsinsamling
	6.2.6 Skapande av systemanatomi
	6.2.7 Uppföljning av systemanatomi
	6.2.8 Källkritik

	6.3 Arbetet i vidare sammanhang
	6.3.1 Etiska aspekter
	6.3.2 Strukturella aspekter
	6.3.3 Individuella aspekter
	6.3.4 Sociala aspekter
	6.3.5 Tekniska aspekter
	6.3.6 Ekonomiska aspekter
	6.3.7 Miljömässiga aspekter

	7 Slutsatser
	7.1 Hur kan tidredovisningssystemet TIDIG implementeras så att man skapar värde för kunden?
	7.2 Vilka erfarenheter kan dokumenteras från TIDIG som kan vara intressanta för framtida projekt?
	7.3 Vilket stöd kan man få genom att skapa och följa upp en systemanatomi?
	7.4 Vilka för- och nackdelar finns med att dela upp en webbapplikation som TIDIG i en frontend- respektive backend-server med separata arbetsgrupper?

	8 Referenser

