
Testplan
Version 2.0 PUM02 2025-04-14

Testplan 2025-04-14

Projektidentitet

Medlemmar

Namn Ansvarsområde Mail

Alice Almgren Teamledare alial202@student.liu.se

Anton Taber Testledare antta671@student.liu.se

Axel Berg Arkitekt axebe390@student.liu.se

Isabel Neubauer Dokumentansvarig isane541@student.liu.se

Jakob Tormalm Analysansvarig jakto054@student.liu.se

Samuel Tuvstedt Backendutvecklingsledare samtu593@student.liu.se

Samuel Åkesson Konfigurationsansvarig samak519@student.liu.se

Simon Gunnarsson Frontendutvecklingsledare simgu061@student.liu.se

Stina Åström Kvalitetssamordnare stias606@student.liu.se

Kund:
Digitaliseringsavdelningen, Linköpings universitet

Handledare:
Eric Ekström

Examinator / kursansvarig:
Lena Buffoni

2 / 16

Testplan 2025-04-14

Dokumenthistorik

Version Datum Ändringar Granskad av Utfärdat av

2.0 2025-04-14 Ändring efter
intern feedback

S.Åk, I.N A.T, A.B

1.1 2025-03-30 Åtgärdat
extern feedback

A.A A.T, S.Åk

1.0 2025-03-11 Åtgärdat intern
feedback

J.T A.T

0.3 2025-03-06 Åtgärdat intern
feedback

A.A A.T

0.2 2025-03-04 Åtgärdat intern
feedback

A.A, S.Ås A.T, S.Åk

0.1 2025-02-21 Skapats A.A, A.B, I.N,
S.T, S.Åk, S.Ås

A.T

3 / 16

Testplan 2025-04-14

Innehåll

1. Referenser . ⁠5

2. Introduktion . ⁠6
2.1. Bakgrund . ⁠6
2.2. Syfte . ⁠6
2.3. Mål . ⁠6
2.4. Målgrupp . ⁠6
2.5. Definitioner, akronymer och förkortningar . ⁠6

3. Testobjekt . ⁠7

4. Testomfattning . ⁠8
4.1. Funktioner som ska testas . ⁠8
4.2. Funktioner som inte ska testas . ⁠8

5. Teststrategi . ⁠9
5.1. Testnivåer . ⁠9
5.2. Testverktyg . ⁠9

6. Riskanalys . ⁠12
6.1. Risker . ⁠12
6.2. Riskhantering . ⁠12

7. Testkriterier . ⁠13
7.1. Godkännandekriterier . ⁠13
7.2. Överlämningskriterier . ⁠13

8. Testartefakter . ⁠14

9. Miljöbehov . ⁠15

10. Roller och ansvar . ⁠16
10.1. Testroller . ⁠16
10.2. Ansvar . ⁠16

4 / 16

Testplan 2025-04-14

1. Referenser
[1] A. Almgren m.fl., ”Projektplan”, technical report, jan. 2025.

[2] A. Almgren m.fl., ”Kravspecifikation”, technical report, feb. 2025.

[3] A. Almgren m.fl., ”Begreppslista”, technical report, jan. 2025.

[4] Svelte, ”Svelte Introduction”, 2024, Svelte. Tillgänglig vid: https://svelte.dev/docs/
svelte/overview. [Åtkomstdatum: 26 februari 2025]

[5] TypeScript, ”TypeScript is JavaScript with syntax for types.”, TypeScript. Tillgänglig
vid: https://www.typescriptlang.org/. [Åtkomstdatum: 07 mars 2025]

[6] Microsoft, ”ASP.NET Core”, Microsoft. Tillgänglig vid: https://dotnet.microsoft.com/
en-us/apps/aspnet. [Åtkomstdatum: 10 februari 2025]

[7] Microsoft, ”C# language documentation”, Microsoft. Tillgänglig vid: https://learn.
microsoft.com/en-us/dotnet/csharp/. [Åtkomstdatum: 10 februari 2025]

[8] K. Sandahl, ”Project Management”, 24 september 2024. Tillgänglig vid: https://www.
ida.liu.se/~TDDC88/theory/10project-management.pdf. [Åtkomstdatum: 16 februari
2025]

[9] ”Azure Pipelines”. Tillgänglig vid: https://azure.microsoft.com/en-us/products/
devops/pipelines. [Åtkomstdatum: 14 april 2025]

[10] N. Thomas, ”How To Use The System Usability Scale (SUS) To Evaluate The
Usability Of Your Website”, Tillgänglig vid: https://usabilitygeek.com/how-to-use-
the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/.
[Åtkomstdatum: 14 februari 2025]

[11] Google, ”Largest Contentful Paint (LCP)”, Google. Tillgänglig vid: https://web.dev/
articles/lcp. [Åtkomstdatum: 21 januari 2025]

[12] ”xUnit”. Tillgänglig vid: https://xunit.net/. [Åtkomstdatum: 14 april 2025]

[13] Google, ”Web Vitals”, Google. Tillgänglig vid: https://web.dev/articles/vitals.
[Åtkomstdatum: 20 februari 2025]

[14] Google, ”lighthouse-ci”, Google. Tillgänglig vid: https://github.com/GoogleChrome/
lighthouse-ci. [Åtkomstdatum: 17 februari 2025]

[15] typescript-eslint, ”typescript-eslint”, typescript-eslint. Tillgänglig vid: https://
typescript-eslint.io/getting-started. [Åtkomstdatum: 17 februari 2025]

[16] ”svelte-check”. Tillgänglig vid: https://svelte.dev/docs/cli/sv-check. [Åtkomstdatum:
14 april 2025]

[17] ”Dotnet”. Tillgänglig vid: https://dotnet.microsoft.com/. [Åtkomstdatum: 14 april
2025]

[18] ”Node.js”. Tillgänglig vid: https://nodejs.org/. [Åtkomstdatum: 14 april 2025]

5 / 16

https://svelte.dev/docs/svelte/overview
https://svelte.dev/docs/svelte/overview
https://www.typescriptlang.org/
https://dotnet.microsoft.com/en-us/apps/aspnet
https://dotnet.microsoft.com/en-us/apps/aspnet
https://learn.microsoft.com/en-us/dotnet/csharp/
https://learn.microsoft.com/en-us/dotnet/csharp/
https://www.ida.liu.se/~TDDC88/theory/10project-management.pdf
https://www.ida.liu.se/~TDDC88/theory/10project-management.pdf
https://azure.microsoft.com/en-us/products/devops/pipelines
https://azure.microsoft.com/en-us/products/devops/pipelines
https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
https://web.dev/articles/lcp
https://web.dev/articles/lcp
https://xunit.net/
https://web.dev/articles/vitals
https://github.com/GoogleChrome/lighthouse-ci
https://github.com/GoogleChrome/lighthouse-ci
https://typescript-eslint.io/getting-started
https://typescript-eslint.io/getting-started
https://svelte.dev/docs/cli/sv-check
https://dotnet.microsoft.com/
https://nodejs.org/

Testplan 2025-04-14

2. Introduktion
Testplanen beskriver de strategier och metoder för testning som ska utföras på den
beställda produkten och dess tillhörande system. Dokumentet kommer uppdateras
kontinuerligt under projektets gång i takt med ändringar av krav, planering och
projektspecifika beslut.

2.1. Bakgrund
Målet med projektet är att skapa en produkt åt Digitaliseringsavdelningen (DIGIT) på
Linköpings Universitet. De har beställt ett tidsredovisningssystem för sina anställda. Mer
information om projektet hittas i projektplanen [1].

2.2. Syfte
Syftet med testplanen är att ge projektgruppen ett underlag för hur testerna ska utföras,
vad som ska testas och vem som har ansvar för de olika testerna. Syftet med testerna är
att säkerställa produktens funktionalitet och användarbehov enligt kravspecifikationen [2].

2.3. Mål
Målet med testerna är att kunna lämna över en produkt till beställaren som följer de krav
som definierats i kravspecifikationen [2].

2.4. Målgrupp
Testplanen riktar sig till utvecklare, testare, testledare och andra intressenter som är
involverade i testningsprocessen.

2.5. Definitioner, akronymer och förkortningar
Förklaringar till de förkortningar, definitioner och akronymer som används i det här
dokumentet finns i projektets begreppslista [3].

6 / 16

Testplan 2025-04-14

3. Testobjekt
Följande är en lista över systemkomponenter och dokument som ska testas i detta projekt:

A) Tidsredovisningssystemets frontend, Version 1.0

Utvecklat i Svelte 5 [4] med TypeScript [5]. Funktioner som ska testas inkluderar:
• Inloggning och autentisering
• Redovisning av arbetstid
• Skapa och redigera uppgifter
• Import och export av .csv-filer med redovisad tid

B) Tidsredovisningssystemets backend, Version 1.0

Utvecklat i ASP.NET [6] med C# [7]. Backend ansvarar för datalagring och logik.
Funktioner som ska testas inkluderar:
• Att autentiseringen fungerar
• Att varje ändpunkt tar emot och skickar den data som förväntas
• Sortering av uppgiftslistor
• Integration med LiU-API

C) Användartester, Version 1.0

Scenariobaserade tester utifrån följande användarhistorier [8]:
• Som en användare vill jag kunna:

‣ logga in och identifiera mig för att få tillgång till systemet och relevanta funktioner för
min roll.

‣ exportera en rapport som .csv-fil för att spara ner och arbeta med lokalt.
‣ använda systemet på både en dator och en mobil för att inte begränsa min

användning av systemet när jag ska använda det.
• Som en tidsredovisare vill jag kunna:

‣ se, lägga till och redigera tider som jag arbetat på en uppgift.
‣ exportera en mall, som jag kan fylla i mina arbetstider i för att externt kunna jobba

med min tidsredovisning, och sedan importera den till systemet för att redovisa tider.
‣ söka och filtrera bland uppgifter samt favorisera de uppgifter som är mest relevanta

för mig för tillfället.
‣ se statistik över hur många timmar som jag jobbat och hur mycket flextid jag har för

att veta hur jag ska planera mitt arbete.
• Som en administratör vill jag kunna:

‣ skapa och redigera uppgifter samt tilldela dem till tidsredovisare.
‣ skapa rapporter över hur tidsredovisare jobbat och hur mycket tid som redovisats till

en uppgift.
• Som en utvecklare vill jag kunna:

‣ läsa koden och förstå hur den är strukturerad för att enkelt bygga ut det befintliga
systemet.

D) Projektets kravspecifikation [2], Version 1.1

Kravspecifikationen specificerar samtliga funktionella, icke-funktionella och kvalitetskrav
och står till grund för att verifiera att funktionerna uppfylls.

7 / 16

Testplan 2025-04-14

4. Testomfattning
Testomfattningen beskriver de funktioner i systemet som ska eller inte ska testas.

4.1. Funktioner som ska testas
A) Inloggning och autentisering

B) Redovisning av arbetstider

C) Importering av arbetstider från .csv-fil

D) Redigering av redovisade arbetstider

E) Visning av redovisade arbetstider

F) Skapande av uppgifter

G) Redigering av uppgifter

H) Sökning och filtrering av uppgifter

I) Favorisering av uppgifter

J) Skapande av rapporter

K) Exportering av rapporter till .csv-fil

L) Sökning och filtrering av rapporter

M) Statistikgenerering

N) Responsivitet och tillgänglighet

O) Felhantering

4.2. Funktioner som inte ska testas
A) Användargränssnittets kompatibilitet med äldre versioner av webbläsare innan år 2020

8 / 16

Testplan 2025-04-14

5. Teststrategi
Testerna kommer utföras med två tillvägagångssätt under utvecklingen. Det ena
tillvägagångssättet är genom manuella tester, script eller testfiler som exekveras i Azure

Pipeline [9]. Testfilerna är lokaliserade i samma mapp som den fil som ska testas. Det
andra tillvägagångssättet är genom enkäter och användningstester.

5.1. Testnivåer
De olika testnivåerna [8] som testningen ska fokusera på är:

• Enhetstester

Syftet med enhetstesterna är att testa enskilda funktioner i koden. Målet är att
backendkoden ska ha en kodtäckning på 95%, enligt kravspecifikationen [2]. Enhetstester
skrivs för varje backendfunktion och placeras i tillhörande testfil. Testfallen utgår ifrån en
funktion som implementerats i koden och ska träffa alla delar av koden för att testerna ska
ha så stor kodtäckning som möjligt. På denna testnivå utförs även kodkvalitetstester för
att säkerställa att koden är läsbar och följer de kodkonventioner och formatering som
bestämts.

• Integrationstester

Syftet med integrationstesterna är att säkerställa att de fåtal komponenter i backend som
direkt interagerar med varandra, fungerar tillsammans. Integrationstester ska skrivas där
backendfunktioner anropar varandra.

• Systemtester

Systemtesterna är manuella tester som utförs av testarna för att säkerställa att alla
systemfunktioner är testade. Testarna utför uppgifter baserade på de användarscenarion
som tagits fram i kravspecifikationen [2]. Efter att testerna är utförda ska testarna svara på
en SUS-enkät [10] som ger ett underlag för hur systemet var att använda. Målet är att ha
ett snitt på minst 68 i SUS-betyg. På denna testnivå utförs även prestandatester för att
säkerställa systemets respons och stabilitet under beslastning. Målet är att LCP [11] ska
maximalt vara 2,5 sekunder i minst 95 % av fallen.

• Acceptanstester

Syftet med acceptanstesterna är att kontrollera att systemet fungerar enligt användarnas
behov. De utförs av kunden vid sluttestningen innan överlämningen av produkten för att
säkerställa att kravspecifikationen [2] är uppfylld.

5.2. Testverktyg
• xUnit: För att testa backend används ett externt testbibliotek xUnit [12]. Figur 1 visar

hur xUnit ska användas i en testfil för att testa en funktion. Genom att köra funktionen
och jämföra det med ett förväntat resultat så kan xUnit avgöra om funktionen fungerar
som den ska.

9 / 16

Testplan 2025-04-14

// Sum.cs

public class Fun

{

 public static int Sum(int a, int b)

 {

 return a + b;

 }

}

// SumTest.cs

using Xunit;

public class SumTests

{

 [Fact]

 public void Add_1_And_2_ShouldEqual_3()

 {

 // Arrange

 int varA = 1;

 int varB = 2;

 // Act

 int res = Sum.Sum(varA, varB);

 // Assert

 Assert.Equal(3, res);

 }

}

Figur 1: Mall för enhetstester i C# med xUnit

• Lighthouse: För att mäta systemets prestanda används Lighthouse, vilket är ett sätt
att automatiskt samla in så kallade Web Vitals [13] på en webbapplikation. Mer
specifikt används verktyget lighthouse-ci [14] så att det körs vid varje pushad commit i en
Azure Pipeline [9]. Den genomför då mätningen tre gånger, sammanställer ett
medelvärde och laddar till sist upp mätdatan för den aktuella commit:en. På så vis kan
alla mätvärden spåras över tid.

• För att testa kodens kvalitet används följande verktyg:
‣ ESLint: För att hålla koden ren och konsekvent används ESLint [15]. Det är ett

verktyg framtaget för TypeScript som varnar för buggar och fel i kodstil.
‣ svelte-check: Likt ESLint så utför svelte-check [16] en kontroll så att det inte sker

kompileringsfel, att alla variabler används och att sveltekomponenter används korrekt.

ESLint och svelte-check körs som en Azure Pipeline [9] men kan även utföras av
utvecklarna i samband med att man slår ihop två utvecklingsgrenar i Azure DevOps.
För att genomföra detta manuellt skrivs de kommandon som syns i Figur 2.

npm run format

npm run check

npm run lint

10 / 16

Testplan 2025-04-14

Figur 2: Manuellt test av kodkvalitet i frontend

• SUS-enkät: Efter testerna är klara svarar testpersonerna på en SUS-enkät [10] som
innehåller följande frågor:
1. Jag tror att jag skulle vilja använda denna produkt ofta.
2. Jag tyckte att denna produkt var onödigt komplicerad.
3. Jag tyckte att denna produkt var lätt att använda.
4. Jag tror att jag kommer behöva hjälp av en teknisk person för att kunna använda

denna produkt.
5. Jag tyckte att det var för mycket inkonsekvens i produkten.
6. Jag kan tänka mig att de flesta skulle lära sig att använda denna produkt mycket

snabbt.
7. Jag tyckte att denna produkt var mycket besvärlig att använda.
8. Jag kände mig väldigt trygg när jag använde denna produkt.
9. Jag behövde lära mig mycket innan jag kunde komma igång med denna produkt.

Varje test är viktat med Ekvation 1 och resulterar i ett betyg på skalan 1-100.

SUS-betyg = 2.5 ⋅ (20 + summan av udda frågor − summan av jämna frågor) (1)

11 / 16

Testplan 2025-04-14

6. Riskanalys

6.1. Risker
Följande är en lista över de risker som kan påverka resultatet eller omfattningen av de
tester som utförs:

A) Försenad integration mellan backend och frontend kan leda till att testningen skjuts
upp och enbart görs på en temporär databas kopplad direkt till frontendservern. Dessa
tester riskerar att göras i onödan om viss logik som skrivs på frontendservern ska
migreras till backendservern.

B) Försenad integration med LiU:s API kan leda till att fiktiv data används för långt in i
projektets implementation och resultera i att koden förlitar sig för mycket på dess
struktur.

C) Tidsbrist kan leda till att inte tillräckligt många tester utförs och att projektet då inte
håller kravspecifikationens [2] kvalitetskrav.

D) Testerna har inte en tillräckligt stor kodtäckning.

E) Ändrade krav från kunden kan påverka planeringen och riskerar att tester behöver
skrivas om.

6.2. Riskhantering
A) Tydlig kommunikation mellan utvecklarna är viktig för att backend ska ha samma

ändpunkter som frontend förväntar sig. På så sätt behöver inte testkoden för klienten
skrivas om.

B) Att fokusera på den implementering där utvecklarna inte är begränsade är att
prioritera för att kunna börja testa tidigt.

C) Tidsbristen kan undvikas genom att testmoment ingår i varje sprint. I
sprintplaneringen ska det förtydligas vad som ska testas, vilka som ska testa och när
testningen ska utföras så att det inte blir någon felkommunikation.

D) Genom att köra Azure Pipeline [9] genereras en sammanfattning om hur mycket av
koden som blev körd.

E) Ändrade krav från kunden kan påverka planeringen och riskerar att tester behöver
skrivas om.

12 / 16

Testplan 2025-04-14

7. Testkriterier
Innan projektet är avslutat så måste godkännande- och överlämningskriterier vara
uppfyllda för att säkerställa att systemet är färdigt att använda och uppfyller alla ställda
krav.

7.1. Godkännandekriterier
För att sluttestningen ska kunna godkännas måste alla testnivåer ha genomförts enligt
testplanen. Detta innebär att alla testfall ska ha körts och alla kritiska buggar och fel som
identifierats under tester ska ha åtgärdats.

7.2. Överlämningskriterier
För att produkten ska kunna överlämnas måste följande kriterier vara uppfyllda:
• Tester ska ha utförts som bekräftar att produkten uppfyller de krav ifrån

kravspecifikationen [2] som har prioritet 1.
• Beställaren måste ha godkänt acceptanstesterna och att systemet uppfyller deras behov.
• Systemet ska vara redo för driftsättning.

13 / 16

Testplan 2025-04-14

8. Testartefakter
• Tester rapporteras löpande i en testrapport. Testrapporten innehåller en beskrivning av

aktiviteterna, resultatet, de olika avvikelserna i testet och en utvärdering av varje
aktivitet. Under projektgruppsmöten används testrapporten för att planera testerna för
nästa sprint.

• Resultatet av svaren från SUS-enkäten [10] som fylls i efter systemtesterna sparas ner i
ett kalkylark och används till grund för utveckling av designen.

14 / 16

Testplan 2025-04-14

9. Miljöbehov
Följande element krävs för att genomföra testerna:

• En dator med en webbläsare som stöds enligt krav NFR7 i kravspecifikationen [2].

• .NET SDK [17] måste vara installerat för att köra backendtesterna.

• Node.js [18] måste vara installerat för att köra frontendtesterna.

• Lighthouse [14] måste vara installerat för att köra prestandatesterna.

15 / 16

Testplan 2025-04-14

10. Roller och ansvar
Projektgruppen har olika roller och ansvarsområden. Kapitlet beskriver rollerna och vilket
ansvar som medföljer varje roll.

10.1. Testroller
• Testledare (TL): Planerar, koordinerar testning och säkerställer testutförande.

• Utvecklare (U): Projektmedlem som utvecklar kod i projektet.

• Testare (T): Utvecklare inom projektgruppen som testar annan utvecklares kod.

• Slutanvändare (Kund): Beställaren av produkten.

10.2. Ansvar
De olika rollerna utför tester inriktade på olika testnivåer där de även är ansvariga för att
testerna utförs. Ansvarsområdena för varje roll kan läsas av i Tabell 1.

Tabell 1: Ansvarsområden

Ansvar TL U T Kund

Enhetstester X X

Integrationstester X X

Systemtester X

Acceptanstester X X

Rapportering X X

Dokumentation X X

Godkännande av godkännandekriterier X X

Godkännande av avslutskriterier X X

16 / 16

	1. Referenser
	2. Introduktion
	2.1. Bakgrund
	2.2. Syfte
	2.3. Mål
	2.4. Målgrupp
	2.5. Definitioner, akronymer och förkortningar

	3. Testobjekt
	4. Testomfattning
	4.1. Funktioner som ska testas
	4.2. Funktioner som inte ska testas

	5. Teststrategi
	5.1. Testnivåer
	5.2. Testverktyg

	6. Riskanalys
	6.1. Risker
	6.2. Riskhantering

	7. Testkriterier
	7.1. Godkännandekriterier
	7.2. Överlämningskriterier

	8. Testartefakter
	9. Miljöbehov
	10. Roller och ansvar
	10.1. Testroller
	10.2. Ansvar

